将.dat文件导入为数组

时间:2017-09-28 15:42:15

标签: python arrays numpy

我有一个看起来像这样的.dat文件。

ID_1,5.0,5.0,5.0,... 
ID_2,5.0,5.0,5.0,...

我试图将数据作为数组导入Python。

如果我这样做,它会给我一个元组列表。

data = np.genfromtxt('mydat.dat',
                     dtype=None,
                     delimiter=',')

但是,当我执行以下操作时,它会产生奇怪的结果,可能是因为第一个元素不是浮点数。

np.fromfile('mydat.dat', dtype=float)

array([  3.45301146e-086,   3.45300781e-086,   3.25195588e-086, ...,
         8.04331780e-096,   8.04331780e-096,   1.31544776e-259])

对此有何建议?这些是将.dat文件作为数组导入Python的两种主要方式,它们似乎无法提供所需的结果。

2 个答案:

答案 0 :(得分:2)

以下是我们阅读&m; mydat.dat'的每一行的一种方法。文件,将每个值转换为strfloat,然后加载到numpy array

import numpy as np

def is_float(string):
    """ True if given string is float else False"""
    try:
        return float(string)
    except ValueError:
        return False

data = []
with open('mydat.dat', 'r') as f:
    d = f.readlines()
    for i in d:
        k = i.rstrip().split(",")
        data.append([float(i) if is_float(i) else i for i in k]) 

data = np.array(data, dtype='O')

结果

>>> data
array([['ID_1', 5.0, 5.0, 5.0],
       ['ID_2', 5.0, 5.0, 5.0]], dtype=object)

另外,如果您可以使用pandas来读取和操作数据,我会这样做。 pandas效率很高,特别是对于较大的数据,并且易于操作。

#read data as csv to a dataframe
>>> df = pd.read_csv('mydat.dat', sep=",", header=None)
>>> df
      0    1    2    3
0  ID_1  5.0  5.0  5.0
1  ID_2  5.0  5.0  5.0

#Transposed data with ID numbers as headers
>>> df.T
      0     1
0  ID_1  ID_2
1     5     5
2     5     5
3     5     5
>>> 

答案 1 :(得分:1)

您可能想要使用numpy loadtext。您可以指定不同列的格式。