我需要帮助来解析文本文件到csv。我的文本文件如下所示:
12: IBD08; ANALYSIS AND CHARACTERISATION OF THE FAECAL MICROBIAL DEGRADOME IN INFLAMMATORY BOWEL DISEASE
Identifiers: BioSample: SAMEA3914946; SRA: ERS1102080
Organism: Homo sapiens
Attributes:
/sample name="ERS1102080"
/collection date="2011"
/environment biome="Intestine"
/environment feature="Colon"
/environment material="Faecal"
/geographic location (country and/or sea)="United Kingdom"
/host body product="Faeces"
/host disease status="Healthy"
/human gut environmental package="human-gut"
/investigation type="metagenome"
/latitude (raw)="51??31'03.3"
/longitude (raw)="0??10'25.2"
/project name="IBD gut"
/sequencing method="Illumina Miseq"
Description:
Multi 'omic analysis of the gut microbiome in IBD
Accession: SAMEA3914946 ID: 5788180
2: qiita_sid_833:833.Sweden.IBD.102A; 833.Sweden.IBD.102A
Identifiers: BioSample: SAMEA3924619; SRA: ERS1111753
Organism: gut metagenome
Attributes:
/sample name="ERS1111753"
/sex="male"
/age="3.9"
/age group="2.0"
/age unit="years"
/altitude="0"
/anonymized name="Sweden.IBD.102A"
/antibiotics="definite_no"
/assigned from geo="False"
/barcodesequence="CTGCTATTCCTC"
/body habitat="UBERON:feces"
/body product="UBERON:feces"
/tissue="UBERON:feces"
/breed="Great_Dane"
/breed grouping="Working"
/collection date="1/30/12"
/collection timestamp="1/30/12"
/common name="gut metagenome"
/geographic location="Sweden: GAZ"
/depth="0"
/disease="IBD"
/dna extracted="True"
/elevation="13.02"
/emp status="NOT_EMP"
/environment biome="ENVO:urban biome"
/environment feature="ENVO:animal-associated habitat"
/env matter="ENVO:feces"
/experiment center="Texas A&M"
/experiment design description="Fecal samples from dogs of various breeds, places of origin, and severity of bowel disorder were sequencing to obtain a dog gut metagenome."
/experiment title="suchodolski_dog_ibd"
/gender specific="M"
/has extracted data="True"
/has physical specimen="True"
/histo="both"
/host="domestic dog"
/host="Canis lupus familiaris"
/host subject id="Sweden.IBD.102A"
/host taxonomy ID="9615"
/illumina technology="HiSeq"
/latitude="60.13"
/library construction protocol="This analysis was done as in Caporaso et al 2011 Genome research. The PCR primers F515 and R806 were developed against the V4 region of the 16S rRNA, both bacteria and archaea, which we determined would yield optimal community clustering with reads of this length The reverse PCR primer is barcoded with a 12-base error-correcting Golay code to facilitate multiplexing of up to 1,500 samples per lane, and both PCR primers contain sequencer adapter regions."
/linker="GT"
/linkerprimersequence="GTGCCAGCMGCCGCGGTAA"
/longitude="18.64"
/pcr primers="FWD:GTGCCAGCMGCCGCGGTAA; REV:GGACTACHVGGGTWTCTAAT"
/physical location="CCME"
/physical specimen location="Texas A&M"
/physical specimen remaining="False"
/platform="Illumina"
/platformchemistry="HiSeq_V4"
/pool name="R.K.1.20.12"
/primer plate="1"
/public="False"
/required sample info status="completed"
/run center="CCME"
/run date="1/30/12"
/run prefix="Suchodolski_dog_ibd"
/sample size="0.1, gram"
/sample center="Texas A&M"
/sample plate="IBD1"
/sequencing meth="sequencing by synthesis"
/size grouping="large"
/study center="Texas A&M"
/target gene="16S rRNA"
/target subfragment="V4"
/title="Suchodolski_dog_ibd"
/total mass="54.0"
/weight group="5.0"
/weight kg="54.0"
/well id="H6"
Description:
IBD1_Sweden_IBD_102A_H6_R.K.1.20.12
Accession: SAMEA3924619 ID: 5507372
输出格式: 项目名称BioSample SRA生物样本名称等... IBD08 SAMEA3914946 ERS1102080 Homo sapiens ERS1102080
每个项目都有不同的领域。如何在所有项目中创建每个字段的列。提前致谢
答案 0 :(得分:0)
您的两个示例包含非常不同的字段,但您仍然可以创建包含所需字段的CSV,如下所示:
from itertools import groupby, takewhile, ifilter
import re
import csv
heading = None
sub_headings = ['Identifiers', 'Organism']
attribute_fields = []
# First scan to determine list of all used attribute_fields
with open('projects.txt') as f_projects:
re_attributes = re.compile(r' \/(.*?)=".*"')
for line in f_projects:
# ' /sample size="0.1, gram"'
re_attribute = re_attributes.match(line)
if re_attribute:
attribute_fields.append(re_attribute.group(1))
# Remove duplicate attributes, sort and prefix the top fields
attribute_fields = ['Description', 'id', 'Accession', 'AccessionID'] + sorted(set(attribute_fields))
with open('projects.txt') as f_projects, open('output.csv', 'wb') as f_output:
csv_output = csv.DictWriter(f_output, fieldnames=sub_headings + attribute_fields)
csv_output.writeheader()
skip_empty_lines = ifilter(lambda x: len(x.strip()), f_projects)
for k, v in groupby(skip_empty_lines, lambda x: re.match('\d+: ', x)):
if k:
heading = next(v).strip()
elif heading:
row = {'id' : heading}
lines = list(v)
for line_number, line in enumerate(lines):
for sub_heading in sub_headings:
if line.startswith(sub_heading):
row[sub_heading] = line.split(':', 1)[1].strip()
if line.startswith('Attributes:'):
for attribute in takewhile(lambda x: x.startswith(' /'), iter(lines[line_number+1:])):
k, v = re.findall(r'/(.*?)="(.*?)"', attribute)[0]
row[k] = v
if line.startswith('Description:'):
row['Description'] = lines[line_number+2].strip() # use next line only
# Accession: SAMN00030407\tID: 30407
if line.startswith('Accession:'):
accession, accession_id = re.match('Accession: (.*?)\tID: (.*?)$', line).groups()
row.update({'Accession':accession, 'AccessionID':accession_id})
csv_output.writerow(row)
这会产生一个相当稀疏的输出CSV,如下所示:
Identifiers,Organism,Description,id,Accession,AccessionID,!16S_BarcodeSequence,"""PUBLIC""",16S_ForwardPrimer,16S_LinkerPrimerSequence,ArrayExpress-Species,ENA-CHECKLIST,ENA-FIRST-PUBLIC,ENA-LAST-UPDATE,HCA_MBT,HEIGHT,ITS2_BarcodeSequence,ITS2_LinkerPrimerSequence,PUBLIC,PlatformChemistry,Species,TOTAL_SCCA,WEIGHT,age,age at fmt,age group,age unit,age_unit,altitude,analyte type,anonymized name,anonymized_name,antibiotics,assigned from geo,assigned_from_geo,barcoded primer name,barcoded_primer_name,barcodesequence,bcs,bcs grouping,biomaterial provider,biospecimen repository,biospecimen repository sample id,body habitat,body mass index,body product,breed,breed grouping,calprotectin,cd behavior,cd location,cd resection,chemical administration,collection date,collection timestamp,common name,common_name,crude fiber 1000kcalg me group,cultivar,day since fmt,depth,description,detail,dewormed,diagnosis full,disease,disease control,dna extracted,donor group,donor kind,donor or patient,donor_recipient,ecotype,elevation,emp status,env matter,env_matter,environment biome,environment feature,environment material,environmental package,ethnicity,exp code,experiment center,experiment design description,experiment title,fecal date,fmt modality,g fat 1000kcal me group,g protein 1000kcal me group,gastrointestinal tract disorder,gender specific,geographic location,geographic location (country and/or sea),has extracted data,has physical specimen,health state,histo,histological type,hospitalized for fmt,host,host age,host body mass index,host body product,host disease,host disease status,host family relationship,host genotype,host sex,host subject id,host taxonomy ID,host tissue sampled,host-associated environmental package,human gut environmental package,ibd,ibd or not,ibd subtype,illumina technology,immune_state,immunocompromized,indiv g fat 1000kcal me group,indiv g protein 1000kcal me group,individual,indoor outdoor,inflammed,investigation type,isolate,isolation and growth condition,isolation source,lane,latitude,latitude (raw),latitude and longitude,library construction protocol,linker,linkerprimersequence,longitude,longitude (raw),marital status,mid,miscellaneous parameter,molecular data type,mouse_number,non barcoded linker,non barcoded primer,non barcoded primer name,non_barcoded_linker,non_barcoded_primer,non_barcoded_primer_name,number courses metronidazole,number fidaxo courses,number ivig,number prior episodes,number prior fmt,number recurrence after fmt,number std vanco courses,number vanco tapers,pathology,patient,patientnumber,pcr primers,pcr_primers,perc crude protein min group,percent crude fat min group,percent crude fiber max group,percent met cal carb group,percent met cal fat group,percent met cal protein group,perianal disease,perturbation,phenotype,physical location,physical specimen location,physical specimen remaining,platform,platformchemistry,pool name,postfmt cdi result,postfmt symptoms,prebotic source,primer plate,project name,protein source,public,race code,replicate,required sample info status,run center,run date,run prefix,sample center,sample collection device or method,sample id,sample name,sample no ngs nr,sample plate,sample size,sample storage temperature,sample type,sample_code,sample_id,sampling_time,secondary description,separate first,separate first and donor,seq_meth,sequencing meth,sequencing method,sex,size grouping,source material identifiers,state,state us,strain,study,study center,study design,study id,study name,subject,subject code,submitted sample id,submitted subject id,submitter handle,target gene,target subfragment,target_gene,target_subfragment,taxon id,taxon_id,terminal ileum,time_point,time_point_label,time_point_months,timepoint,tissue,title,total mass,travel history,treatment_parasite,uc extent,unknown,vanc plus rif chaser,visit_num,weight group,weight kg,well id,year diagnosed
BioSample: SAMEA3914960,Homo sapiens,Accession: SAMEA3914960 ID: 5788191,1: IBD22; ANALYSIS AND CHARACTERISATION OF THE FAECAL MICROBIAL DEGRADOME IN INFLAMMATORY BOWEL DISEASE,SAMEA3914960,5788191,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2011,,,,,,,,,,,,,,,,,,,,,,,,Intestine,Colon,Faecal,,,,,,,,,,,,,,United Kingdom,,,,,,,,,,Faeces,,Inflammatory Bowel Disease,,,,,,,,human-gut,,,,,,,,,,,,metagenome,,,,,,51??31'03.3,,,,,,0??10'25.2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,IBD gut,,,,,,,,,,,,ERS1102094,,,,,,,,,,,,,,Illumina Miseq,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
BioSample: SAMEA3914951; SRA: ERS1102085,Homo sapiens,Accession: SAMEA3914951 ID: 5788190,2: IBD13; ANALYSIS AND CHARACTERISATION OF THE FAECAL MICROBIAL DEGRADOME IN INFLAMMATORY BOWEL DISEASE,SAMEA3914951,5788190,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2011,,,,,,,,,,,,,,,,,,,,,,,,Intestine,Colon,Faecal,,,,,,,,,,,,,,United Kingdom,,,,,,,,,,Faeces,,Inflammatory Bowel Disease,,,,,,,,human-gut,,,,,,,,,,,,metagenome,,,,,,51??31'03.3,,,,,,0??10'25.2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,IBD gut,,,,,,,,,,,,ERS1102085,,,,,,,,,,,,,,Illumina Miseq,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
在Python 2.7.12上测试