如何在R

时间:2017-09-27 01:34:43

标签: r tidyverse tibble

我有一个玩具的例子。 对按x

分组的两个连续y行进行求和的最有效方法是什么


library(tibble)
l = list(x = c("a", "b", "a", "b", "a", "b"), y = c(1, 4, 3, 3, 7, 0))

df <- as_tibble(l)
df
#> # A tibble: 6 x 2
#>       x     y
#>   <chr> <dbl>
#> 1     a     1
#> 2     b     4
#> 3     a     3
#> 4     b     3
#> 5     a     7
#> 6     b     0

所以输出就像这样

   group   sum  seq
     a      4     1
     a     10     2
     b      7     1
     b      3     2

我想使用RcppRoll包中的tidyverse和可能的roll_sum() 并拥有代码,以便可变长度的连续行可用于存在许多组的真实世界数据

TIA

6 个答案:

答案 0 :(得分:7)

执行此操作的一种方法是使用group_by %>% do,您可以在do中自定义返回的数据框:

library(RcppRoll); library(tidyverse)

n = 2
df %>% 
    group_by(x) %>% 
    do(
        data.frame(
            sum = roll_sum(.$y, n), 
            seq = seq_len(length(.$y) - n + 1)
        )
    )

# A tibble: 4 x 3
# Groups:   x [2]
#      x   sum   seq
#  <chr> <dbl> <int>
#1     a     4     1
#2     a    10     2
#3     b     7     1
#4     b     3     2

编辑:由于这不是那么有效,可能是由于数据框构造标题和移动中的绑定数据帧,这里是一个改进的版本(仍然比data.table慢一些但现在没那么多了):

df %>% 
    group_by(x) %>% 
    summarise(sum = list(roll_sum(y, n)), seq = list(seq_len(n() -n + 1))) %>%
    unnest()

时间,使用@Matt的数据和设置:

library(tibble)
library(dplyr)
library(RcppRoll)
library(stringi) ## Only included for ability to generate random strings

## Generate data with arbitrary number of groups and rows --------------
rowCount   <- 100000
groupCount <- 10000
sumRows    <- 2L
set.seed(1)

l <- tibble(x = sample(stri_rand_strings(groupCount,3),rowCount,rep=TRUE),
            y = sample(0:10,rowCount,rep=TRUE))

## Using dplyr and tibble -----------------------------------------------

ptm <- proc.time() ## Start the clock

dplyr_result <- l %>% 
    group_by(x) %>% 
    summarise(sum = list(roll_sum(y, n)), seq = list(seq_len(n() -n + 1))) %>%
    unnest()


dplyr_time <- proc.time() - ptm ## Stop the clock

## Using data.table instead ----------------------------------------------

library(data.table)

ptm <- proc.time() ## Start the clock

setDT(l) ## Convert l to a data.table
dt_result <- l[,.(sum = RcppRoll::roll_sum(y, n = sumRows, fill = NA, align = "left"),
                  seq = seq_len(.N)),
               keyby = .(x)][!is.na(sum)]

data.table_time <- proc.time() - ptm

结果是:

dplyr_time
#   user  system elapsed 
#  0.688   0.003   0.689 
data.table_time
#   user  system elapsed 
#  0.422   0.009   0.430 

答案 1 :(得分:6)

这是一种方法。由于您要总结两个连续的行,因此可以使用lead()并对sum进行计算。对于seq,我认为您可以简单地获取行号,看看您的预期结果。完成这些操作后,您可以按x(如有必要,xseq)排列数据。最后,删除具有NA的行。如有必要,您可以通过在代码末尾写y来删除select(-y)

group_by(df, x) %>%
mutate(sum = y + lead(y),
       seq = row_number()) %>%
arrange(x) %>%
ungroup %>%
filter(complete.cases(.))

#      x     y   sum   seq
#  <chr> <dbl> <dbl> <int>
#1     a     1     4     1
#2     a     3    10     2
#3     b     4     7     1
#4     b     3     3     2

答案 2 :(得分:5)

我注意到你要求最有效的方式 - 如果你正在考虑将其扩展到更大的集合,我强烈建议使用data.table。

library(data.table)
library(RcppRoll)

l[, .(sum = RcppRoll::roll_sum(y, n = 2L, fill = NA, align = "left"),
      seq = seq_len(.N)),
  keyby = .(x)][!is.na(sum)]

使用包含100,000行和10,000组的tidyverse软件包对比这个答案的粗略基准比较说明了显着差异。

(我使用了Psidom的答案而不是jazzurro,因为jazzuro不允许对一些行数进行求和。)

library(tibble)
library(dplyr)
library(RcppRoll)
library(stringi) ## Only included for ability to generate random strings

## Generate data with arbitrary number of groups and rows --------------
rowCount   <- 100000
groupCount <- 10000
sumRows    <- 2L
set.seed(1)

l <- tibble(x = sample(stri_rand_strings(groupCount,3),rowCount,rep=TRUE),
            y = sample(0:10,rowCount,rep=TRUE))

## Using dplyr and tibble -----------------------------------------------

ptm <- proc.time() ## Start the clock

dplyr_result <- l %>% 
    group_by(x) %>% 
    do(
        data.frame(
            sum = roll_sum(.$y, sumRows), 
            seq = seq_len(length(.$y) - sumRows + 1)
        )
    )
|========================================================0% ~0 s remaining     

dplyr_time <- proc.time() - ptm ## Stop the clock

## Using data.table instead ----------------------------------------------

library(data.table)

ptm <- proc.time() ## Start the clock

setDT(l) ## Convert l to a data.table
dt_result <- l[,.(sum = RcppRoll::roll_sum(y, n = sumRows, fill = NA, align = "left"),
                  seq = seq_len(.N)),
               keyby = .(x)][!is.na(sum)]

data.table_time <- proc.time() - ptm ## Stop the clock

结果:

> dplyr_time
  user  system elapsed 
  10.28    0.04   10.36 
> data.table_time
   user  system elapsed 
   0.35    0.02    0.36 

> all.equal(dplyr_result,as.tibble(dt_result))
[1] TRUE

答案 3 :(得分:4)

使用tidyversezoo的解决方案。这类似于Psidom的方法。

library(tidyverse)
library(zoo)

df2 <- df %>%
  group_by(x) %>%
  do(data_frame(x = unique(.$x), 
                sum = rollapplyr(.$y, width = 2, FUN = sum))) %>%
  mutate(seq = 1:n()) %>%
  ungroup()
df2
# A tibble: 4 x 3
      x   sum   seq
  <chr> <dbl> <int>
1     a     4     1
2     a    10     2
3     b     7     1
4     b     3     2

答案 4 :(得分:1)

zoo + dplyr

library(zoo)
library(dplyr)

df %>% 
    group_by(x) %>% 
    mutate(sum = c(NA, rollapply(y, width = 2, sum)), 
           seq = row_number() - 1) %>% 
    drop_na()

# A tibble: 4 x 4
# Groups:   x [2]
      x     y   sum   seq
  <chr> <dbl> <dbl> <dbl>
1     a     3     4     1
2     b     3     7     1
3     a     7    10     2
4     b     0     3     2

如果移动窗口仅使用lag

等于2
df %>% 
    group_by(x) %>% 
    mutate(sum = y + lag(y), 
    seq = row_number() - 1) %>% 
    drop_na()
# A tibble: 4 x 4
# Groups:   x [2]
      x     y   sum   seq
  <chr> <dbl> <dbl> <dbl>
1     a     3     4     1
2     b     3     7     1
3     a     7    10     2
4     b     0     3     2

编辑:

n = 3    # your moving window 
df %>% 
    group_by(x) %>% 
    mutate(sum = c(rep(NA, n - 1), rollapply(y, width = n, sum)), 
           seq = row_number() - n + 1) %>% 
    drop_na()

答案 5 :(得分:0)

现有答案的一个小变体:首先将数据转换为列表列格式,然后将purrr map() roll_sum()用于数据。

l = list(x = c("a", "b", "a", "b", "a", "b"), y = c(1, 4, 3, 3, 7, 0))
as.tibble(l) %>%
    group_by(x) %>%
    summarize(list_y = list(y)) %>%
    mutate(rollsum = map(list_y, ~roll_sum(.x, 2))) %>%
    select(x, rollsum) %>%
    unnest %>%
    group_by(x) %>%
    mutate(seq = row_number())

我认为如果您拥有purrr的最新版本,则可以使用group_by()而不是mutate()删除最后两行(最终imap()@Entity @Table(name = "sls_notifications") public class SLSNotification { @Id @GeneratedValue(strategy = GenerationType.AUTO) @Column(length = 11) private Integer snumber; @JsonFormat(pattern="yyyy-MM-dd") @Column(nullable = false) private Date date = new Date(); @Column(length = 8) private String cusOffice; @Column(length = 1) private String cusSerial; @Column(length = 50) private String cusDecNo; @JsonFormat(pattern="yyyy-MM-dd") private Date cusDate; @Column(length = 300) private String manufacturer; @Column(length = 300) private String exporterAddress; @Column(length = 20) private String importerVAT; @NotEmpty @Column(length = 20, nullable = false) private String declarantVAT; private String declarantDetails; private String vessel; private String blNo; private String loadingPort; private String tradingCountry; private String countryOrigin; private String invoiceNo; @JsonFormat(pattern="yyyy-MM-dd") private Date invoiceDate; private Double invoiceValue; private String uom; private Double totalQty; private String marksNumber; private String goodsDesc; private String purpose; private String hsCode; private String issuerQltyCert; private String qltyCertifacateNo; private String slsNo; private String invoiceLoc; private String blLoc; private String packlistLoc; private String qcLoc; private String otherLoc; private String accRep; private String accRepLoc; @NotEmpty @Column(length = 255, nullable = false) private String status = "PENDING"; private String userId; private String slsiUnit; private String importerDetails; private String productDesc; private String certRefNo; @JsonFormat(pattern="yyyy-MM-dd") private Date blDate; private String loadCountry; } )地图。