同样,我对python很新。下面我提供我的代码(用于分类与特征选择),而不是数据,因为它是相当高的维度,但我相信这个问题与数据无关。我的问题是双重的:我想要所有子图的轴标签,我想知道如何在每个子图的子图可以不同的情况下进行子图(我有14个子图,当前有三行):
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.model_selection import StratifiedKFold
from sklearn.feature_selection import RFECV
from sklearn.datasets import make_classification
from sklearn import preprocessing
import scipy.io as sio
import numpy as np
import os
allData = sio.loadmat('Alldatav2.mat')
allFeatures = allData['featuresAll2']
# loop over subjects
n_subject = [0,1,2,3,4,5,6,7,8,9,10,11,12,13]
fig, axs = plt.subplots(3,5,figsize=(15, 6))
plt.xlabel("Number of features selected")
plt.ylabel("Cross validation score (nb of correct classifications)")
fig.subplots_adjust()
axs = axs.ravel()
for i, j in zip(n_subject, range(15)):
#print("For Subject : ", i+1)
y = allData['labels']
X = allFeatures[i*120:(i+1)*120,:]
svc = SVC(kernel="linear",C=1)
rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(2),
scoring='accuracy')
rfecv.fit(X, y.ravel())
axs[j].plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_)
plt.show()
# loop over subjects
def mean(numbers):
return float(sum(numbers)) / max(len(numbers), 1)
n_subject = [0,1,2,3,4,5,6,7,8,9,10,11,12,13]
avg_scores = []
for i in n_subject:
print("For Subject : ", i+1)
y = allData['labels']
X = allFeatures[i*120:(i+1)*120,:]
svc = SVC(kernel="linear",C=1)
rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(10),
scoring='accuracy')
rfecv.fit(X, y.ravel())
print("Optimal number of features : %d" % rfecv.n_features_)
print("Ranking of Features : ", rfecv.ranking_)
avg_score = rfecv.grid_scores_.max()
print("Best CV Score : ", avg_score)
avg_scores.append(avg_score)
print("------------------------------------------")
print("Average Accuracy over all Subjects : ", mean(avg_scores))
答案 0 :(得分:1)
对于每个子图的标签,您可以先创建一个包含这些标签的列表。
xlabelList = [xlabel0, xlabel1 ....,xlabel13]
ylabelList = [ylabel0, ylabel1,....,ylabel13]
此外,您不需要为循环定义额外的变量n_subject。对于绘图,我将进行以下更改:
for j in range(14):
#print("For Subject : ", j+1)
y = allData['labels']
X = allFeatures[j*120:(j+1)*120,:]
svc = SVC(kernel="linear",C=1)
rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(2),
scoring='accuracy')
rfecv.fit(X, y.ravel())
locInd = np.unravel_index(j, (3,5))
axs[locInd].plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_)
axs[locInd].set_xlabel(xlabelList[j])
axs[locInd].set_ylabel(ylabelList[j])
plt.show()