有谁知道如何为python散景区域图表添加图例外的情节?我试图绘制分类区域图,看起来非常酷,适用于以下示例:
http://bokeh.pydata.org/en/latest/docs/gallery/brewer.html Bokeh patches plot with dates as x-axis shifts the ticks one to the right how to show legend items of patches in bokeh
到目前为止,我想在情节之外添加传奇,我看到其他答案,但在这种情况下仍然不起作用。我试着在循环中
legend = Legend(items=[LegendItem(label=dict(field="area"), renderers=[r])], location=(0, -30))
p.add_layout(legend, 'right')
给了我:RuntimeError:Plot Figure(id = ...)配置了多个图例渲染器
我还想添加HavorTool和ColumnDataSource。任何帮助将不胜感激。这是我试图在剧情和HavorTool之外添加传奇。
import numpy as np
from bokeh.palettes import brewer
import pandas as pd
from bokeh.plotting import figure, show, output_notebook, output_file
from bokeh.models import HoverTool
from bokeh.models import LegendItem, Legend
output_notebook()
N = 20
categories = ['y' + str(x) for x in range(10)]
data = {}
data['x'] = np.arange(1,N+1)
for cat in categories:
data[cat] = np.random.randint(10, 100, size=N)
data11= pd.DataFrame(data)
data11 = data11.set_index(['x'])
def stacked(df, categories):
areas = dict()
last = np.zeros(len(df[categories[0]]))
for cat in categories:
next = last + df[cat]
areas[cat] = np.hstack((last[::-1], next))
last = next
return areas
areas = stacked(data11, categories)
colors = brewer["Spectral"][len(areas)]
x2 = np.hstack((data['x'][::-1], data['x']))
timesteps = [str(x.date()) for x in pd.date_range('1950-01-01', '1951-08-01', freq='MS')]
p = figure(x_range=timesteps, y_range=(0, 800), toolbar_location="above")
p.grid.minor_grid_line_color = '#eeeeee'
for i, area in enumerate(areas):
r = p.patch(x2, areas[area], color=colors[i], legend=area, alpha=0.8, line_color=None)
''' Add legend below that would match for each area? '''
#legend = Legend(items=[LegendItem(label=dict(field="area"), renderers=[r])], location=(0, -30))
#p.add_layout(legend, 'right')
hover = HoverTool(tooltips=[('category', '@categories'),
('(y0,y1,y2,y3,y4,y5,y6,y7,y8,y9)','(@areas[y0], @areas[y1], @areas[y3], @areas[y4], @areas[y5], @areas[y6], @areas[y7], @areas[y8],@areas[y9])')])
p.add_tools(hover) #Add HavorTool not work?
p.xaxis.major_label_orientation = np.pi/4
show(p)