import numpy as np
import pandas as pd
import tia.bbg.datamgr as dm
mgr = dm.BbgDataManager()
bb_yearb4 = "2016-12-30"
bb_today = "2017-09-22"
indices = [list of indices]
sids_index = mgr[indices]
df_idx = sids_index.get_historical('PX_LAST', bb_yearb4, bb_today)
nan = np.nan
price_test = {}
for index in indices:
price_test["{0}".format(index)] = df_idx.loc[bb_today][index]
输出显示多个nan浮点值:
In [1]: price_test.values()
Out[1]: [nan, nan, nan, 47913.199999999997, nan, 1210.3299999999999, nan]
然而,测试nan显示错误:
In [2]: nan in price_test.values()
Out[2]: False
测试此方法的正确方法是什么?
答案 0 :(得分:9)
NaN很奇怪,因为NaN!= NaN。这有一个很好的理由,但它仍会打破in
检查以及其他一切假设==
行为正常的行为。
使用NaN特定检查检查NaN,例如numpy.isnan
:
any(np.isnan(val) for val in d.values())
或在非NumPy环境中,
any(math.isnan(val) for val in d.values())