我有一个数据框,我希望groupby
bq_market_id
,然后检查每个组NaN
中是否有bq_back_price
个值,如果是,则True
如果每组没有False
,则每组1}}。
bq_selection_id bq_balance bq_market_id bq_back_price
0 45094462 185.04 7278437 1.97
1 45094462 185.04 7278437 1.97
2 45094463 185.04 7278437 3.05
3 45094463 185.04 7278437 3.05
4 45094464 185.04 7278437 5.80
5 45094464 185.04 7278437 5.80
6 45094466 185.04 7278437 200.00
7 45094466 185.04 7278437 200.00
8 45094465 185.04 7278437 NaN
9 45094465 185.04 7278437 NaN
我该怎么做?我尝试了以下方法,但它没有用。
bb.groupby('bq_market_id')['bq_back_price'].isnull().any()
答案 0 :(得分:4)
我认为您可以使用apply
:
print bb.groupby('bq_market_id')['bq_back_price'].apply(lambda x: x.isnull().any())
bq_market_id
7278437 True
Name: bq_back_price, dtype: bool
示例(列bq_market_id
中的某些值已更改):
print bb
bq_selection_id bq_balance bq_market_id bq_back_price
0 45094462 185.04 1 1.97
1 45094462 185.04 1 1.97
2 45094463 185.04 1 3.05
3 45094463 185.04 7278437 3.05
4 45094464 185.04 7278437 5.80
5 45094464 185.04 7278437 5.80
6 45094466 185.04 7278437 200.00
7 45094466 185.04 7278437 200.00
8 45094465 185.04 7278437 NaN
9 45094465 185.04 7278437 NaN
print bb.groupby('bq_market_id')['bq_back_price'].apply(lambda x: x.isnull().any())
bq_market_id
1 False
7278437 True
Name: bq_back_price, dtype: bool