我有一个执行此转换的功能。但我不确定它是怎么做的。任何人都可以解释一下并验证它是否正确?
/**
* \brief Computes the coordinates of the vertices of a triangle
* in a local 2D orthonormal basis of the triangle's plane.
* \param[in] p0 , p1 , p2 the 3D coordinates of the vertices of
* the triangle
* \param[out] z0 , z1 , z2 the 2D coordinates of the vertices of
* the triangle
*/
static void project_triangle(
const vec3& p0,
const vec3& p1,
const vec3& p2,
vec2& z0,
vec2& z1,
vec2& z2
) {
vec3 X = p1 - p0;
X.normalize(); // normalized by dividing x,y,z with length of the vector
vec3 Z = cross(X,(p2 - p0));
Z.normalize();
vec3 Y = cross(Z,X); //cross product
const vec3& O = p0;
double x0 = 0;
double y0 = 0;
double x1 = (p1 - O).length();
double y1 = 0;
double x2 = dot((p2 - O),X);
double y2 = dot((p2 - O),Y);
z0 = vec2(x0,y0);
z1 = vec2(x1,y1);
z2 = vec2(x2,y2);
}
答案 0 :(得分:1)
矢量X,Y,Z形成标准正交基,其中X与p0-p1重合,Y位于三角形平面,Z垂直于该平面。
然后p0映射到2D平面中的坐标原点,p1映射到OX轴上,然后通过X和Y基矢量上的p0-p2矢量投影计算p2坐标。