我找到Pandas groupby cumulative sum并发现它非常有用。但是,我想确定如何计算反向累积和。
该链接表明以下内容。
df.groupby(by=['name','day']).sum().groupby(level=[0]).cumsum()
为了反转总和,我尝试切片数据,但它失败了。
df.groupby(by=['name','day']).ix[::-1, 'no'].sum().groupby(level=[0]).cumsum()
Jack | Monday | 10 | 90
Jack | Tuesday | 30 | 80
Jack | Wednesday | 50 | 50
Jill | Monday | 40 | 80
Jill | Wednesday | 40 | 40
编辑: 根据反馈,我尝试实现代码并使数据框更大:
import pandas as pd
df = pd.DataFrame(
{'name': ['Jack', 'Jack', 'Jack', 'Jill', 'Jill'],
'surname' : ['Jones','Jones','Jones','Smith','Smith'],
'car' : ['VW','Mazda','VW','Merc','Merc'],
'country' : ['UK','US','UK','EU','EU'],
'year' : [1980,1980,1980,1980,1980],
'day': ['Monday', 'Tuesday','Wednesday','Monday','Wednesday'],
'date': ['2016-02-31','2016-01-31','2016-01-31','2016-01-31','2016-01-31'],
'no': [10,30,50,40,40],
'qty' : [100,500,200,433,222]})
然后我尝试对多个列进行分组,但无法应用分组。
df = df.groupby(by=['name','surname','car','country','year','day','date']).sum().iloc[::-1].groupby(level=[0]).cumsum().iloc[::-1].reset_index()
为什么会这样?我预计杰克琼斯与汽车马自达是一个单独的累积数量杰克琼斯与大众。
答案 0 :(得分:2)
您可以使用双iloc
:
df = df.groupby(by=['name','day']).sum().iloc[::-1].groupby(level=[0]).cumsum().iloc[::-1]
print (df)
no
name day
Jack Monday 90
Tuesday 80
Wednesday 50
Jill Monday 80
Wednesday 40
对于另一个列解决方案是简化:
df = df.groupby(by=['name','day']).sum()
df['new'] = df.iloc[::-1].groupby(level=[0]).cumsum()
print (df)
no new
name day
Jack Monday 10 90
Tuesday 30 80
Wednesday 50 50
Jill Monday 40 80
Wednesday 40 40
编辑:
第二个groupby
需要添加更多关卡时出现问题 - level=[0,1,2]
表示先按name
,第二surname
和第三car
级别进行分组。< / p>
df1 = (df.groupby(by=['name','surname','car','country','year','day','date'])
.sum())
print (df1)
no qty
name surname car country year day date
Jack Jones Mazda US 1980 Tuesday 2016-01-31 30 500
VW UK 1980 Monday 2016-02-31 10 100
Wednesday 2016-01-31 50 200
Jill Smith Merc EU 1980 Monday 2016-01-31 40 433
Wednesday 2016-01-31 40 222
df2 = (df.groupby(by=['name','surname','car','country','year','day','date'])
.sum()
.iloc[::-1]
.groupby(level=[0,1,2])
.cumsum()
.iloc[::-1]
.reset_index())
print (df2)
name surname car country year day date no qty
0 Jack Jones Mazda US 1980 Tuesday 2016-01-31 30 500
1 Jack Jones VW UK 1980 Monday 2016-02-31 60 300
2 Jack Jones VW UK 1980 Wednesday 2016-01-31 50 200
3 Jill Smith Merc EU 1980 Monday 2016-01-31 80 655
4 Jill Smith Merc EU 1980 Wednesday 2016-01-31 40 222
或者可以按名称选择 - 请参阅groupby enhancements in 0.20.1+:
df2 = (df.groupby(by=['name','surname','car','country','year','day','date'])
.sum()
.iloc[::-1]
.groupby(['name','surname','car'])
.cumsum()
.iloc[::-1]
.reset_index())
print (df2)
name surname car country year day date no qty
0 Jack Jones Mazda US 1980 Tuesday 2016-01-31 30 500
1 Jack Jones VW UK 1980 Monday 2016-02-31 60 300
2 Jack Jones VW UK 1980 Wednesday 2016-01-31 50 200
3 Jill Smith Merc EU 1980 Monday 2016-01-31 80 655
4 Jill Smith Merc EU 1980 Wednesday 2016-01-31 40 222