data['RealTime'][:,0]
Out[23]:
array([datetime.datetime(2017, 9, 12, 18, 13, 8, 826000),
datetime.datetime(2017, 9, 12, 18, 13, 8, 846000),
datetime.datetime(2017, 9, 12, 18, 13, 8, 866000), ...,
datetime.datetime(2017, 9, 12, 18, 30, 40, 186000),
datetime.datetime(2017, 9, 12, 18, 30, 40, 206000),
datetime.datetime(2017, 9, 12, 18, 30, 40, 226000)], dtype=object)
如何转换为dtype datetime数组?
答案 0 :(得分:1)
我知道你有pandas
,所以你可以使用pd.to_datetime
:
out = pd.to_datetime(array)
print(out)
DatetimeIndex(['2017-09-12 18:13:08.826000', '2017-09-12 18:13:08.846000',
'2017-09-12 18:13:08.866000', '2017-09-12 18:30:40.186000',
'2017-09-12 18:30:40.206000', '2017-09-12 18:30:40.226000'],
dtype='datetime64[ns]', freq=None)
您可以通过访问numpy
从out
检索out.values
数组。
使用numpy
,您可以使用astype
执行相同的操作:
out = array.astype("datetime64[ns]")
print(out)
array(['2017-09-12T18:13:08.826000000', '2017-09-12T18:13:08.846000000',
'2017-09-12T18:13:08.866000000', '2017-09-12T18:30:40.186000000',
'2017-09-12T18:30:40.206000000', '2017-09-12T18:30:40.226000000'], dtype='datetime64[ns]')