如何用Spacy用句子来分解文档

时间:2017-09-19 01:14:40

标签: python spacy

如何将文档(例如,段落,书籍等)分解为句子。

例如,"The dog ran. The cat jumped"加入["The dog ran", "The cat jumped"]与spacy?

4 个答案:

答案 0 :(得分:6)

来自spacy's github support page

from __future__ import unicode_literals, print_function
from spacy.en import English

raw_text = 'Hello, world. Here are two sentences.'
nlp = English()
doc = nlp(raw_text)
sentences = [sent.string.strip() for sent in doc.sents]

答案 1 :(得分:3)

答案

import spacy
nlp = spacy.load('en_core_web_sm')

text = 'My first birthday was great. My 2. was even better.'
sentences = [i for i in nlp(text).sents]

其他信息
假设您已经在系统上安装了模型“ en_core_web_sm”。如果没有,您可以通过在终端中运行以下命令来轻松安装它:

$ python -m spacy download en_core_web_sm

(有关所有可用模型的概述,请参见here。)

根据您的数据,这可能会比仅使用spacy.lang.en.English产生更好的结果。一个(非常简单的)比较示例:

import spacy
from spacy.lang.en import English

nlp_simple = English()
nlp_simple.add_pipe(nlp_simple.create_pipe('sentencizer'))

nlp_better = spacy.load('en_core_web_sm')


text = 'My first birthday was great. My 2. was even better.'

for nlp in [nlp_simple, nlp_better]:
    for i in nlp(text).sents:
        print(i)
    print('-' * 20)

输出:

>>> My first birthday was great.
>>> My 2.
>>> was even better.
>>> --------------------
>>> My first birthday was great.
>>> My 2. was even better.
>>> --------------------

答案 2 :(得分:2)

在 spacy 3.0.1 中,他们改变了管道。

from spacy.lang.en import English 

nlp = English()
nlp.add_pipe('sentencizer')


def split_in_sentences(text):
    doc = nlp(text)
    return [str(sent).strip() for sent in doc.sents]

答案 3 :(得分:1)

最新答案是这样:

from __future__ import unicode_literals, print_function
from spacy.lang.en import English # updated

raw_text = 'Hello, world. Here are two sentences.'
nlp = English()
nlp.add_pipe(nlp.create_pipe('sentencizer')) # updated
doc = nlp(raw_text)
sentences = [sent.string.strip() for sent in doc.sents]