我在执行mleap repository的示例代码时遇到问题。我希望在脚本中运行代码而不是jupyter笔记本(这是运行示例的方式)。我的脚本如下:
have = [[['v', 'e', 'r', 't'], 'A', 'B', 'C', 'D'],
[['v', 'e', 'r', 't'], 'E', 'F', 'G', 'H']]
want = [['v', 'A', 'B', 'C', 'D'],
['e', 'A', 'B', 'C', 'D'],
['r', 'A', 'B', 'C', 'D'],
['t', 'A', 'B', 'C', 'D'],
['v', 'E', 'F', 'G', 'H'],
['e', 'E', 'F', 'G', 'H'],
['r', 'E', 'F', 'G', 'H'],
['t', 'E', 'F', 'G', 'H']]
执行##################################################################################
# start a local spark session
# https://spark.apache.org/docs/0.9.0/python-programming-guide.html
##################################################################################
from pyspark import SparkContext, SparkConf
conf = SparkConf()
#set app name
conf.set("spark.app.name", "train classifier")
#Run Spark locally with as many worker threads as logical cores on your machine (cores X threads).
conf.set("spark.master", "local[*]")
#number of cores to use for the driver process (only in cluster mode)
conf.set("spark.driver.cores", "1")
#Limit of total size of serialized results of all partitions for each Spark action (e.g. collect)
conf.set("spark.driver.maxResultSize", "1g")
#Amount of memory to use for the driver process
conf.set("spark.driver.memory", "1g")
#Amount of memory to use per executor process (e.g. 2g, 8g).
conf.set("spark.executor.memory", "2g")
#pass configuration to the spark context object along with code dependencies
sc = SparkContext(conf=conf)
from pyspark.sql.session import SparkSession
spark = SparkSession(sc)
##################################################################################
import mleap.pyspark
# # Imports MLeap serialization functionality for PySpark
from mleap.pyspark.spark_support import SimpleSparkSerializer
# Import standard PySpark Transformers and packages
from pyspark.ml.feature import VectorAssembler, StandardScaler, OneHotEncoder, StringIndexer
from pyspark.ml import Pipeline, PipelineModel
from pyspark.sql import Row
# Create a test data frame
l = [('Alice', 1), ('Bob', 2)]
rdd = sc.parallelize(l)
Person = Row('name', 'age')
person = rdd.map(lambda r: Person(*r))
df2 = spark.createDataFrame(person)
df2.collect()
# Build a very simple pipeline using two transformers
string_indexer = StringIndexer(inputCol='name', outputCol='name_string_index')
feature_assembler = VectorAssembler(
inputCols=[string_indexer.getOutputCol()], outputCol="features")
feature_pipeline = [string_indexer, feature_assembler]
featurePipeline = Pipeline(stages=feature_pipeline)
featurePipeline.fit(df2)
featurePipeline.serializeToBundle("jar:file:/tmp/pyspark.example.zip")
时出现以下错误:
spark-submit script.py
任何帮助将不胜感激!我从pypy安装了mleap。
答案 0 :(得分:0)
似乎你没有正确地按照这些步骤进行操作,http://mleap-docs.combust.ml/getting-started/py-spark.html它说明了
注意:导入mleap.pyspark需要在导入任何其他PySpark库之前进行。
因此,请尝试在SparkContext
mleap
答案 1 :(得分:0)
我在运行时附加了以下jar文件解决了这个问题:
spark-submit --packages ml.combust.mleap:mleap-spark_2.11:0.8.1 script.py
答案 2 :(得分:0)
请参阅Here
似乎MLeap
还没有为Spark 2.3
做好准备。如果您正在运行Spark 2.3
,请尝试降级到2.2
并重试。希望,这有帮助!