什么是sklearn中的SpectralEmbedding?

时间:2017-09-18 01:20:53

标签: python matplotlib scikit-learn sklearn-pandas

我正在使用Affinity Propogation来聚类我的相似性矩阵sims。我的代码如下。根据{{​​3}}的回答,我使用SpectralEmbedding绘制相似度矩阵sims的数据点。

import sklearn.cluster
from sklearn.manifold import SpectralEmbedding
import numpy as np
import matplotlib.pyplot as plt
from itertools import cycle

sims =  np.array([[0, 17, 10, 32, 32], [18, 0, 6, 20, 15], [10, 8, 0, 20, 21], [30, 16, 20, 0, 17], [30, 15, 21, 17, 0]])

affprop = sklearn.cluster.AffinityPropagation(affinity="precomputed", damping=0.5)
affprop.fit(sims)

cluster_centers_indices = affprop.cluster_centers_indices_
print(cluster_centers_indices)
labels = affprop.labels_
n_clusters_ = len(cluster_centers_indices)
print(n_clusters_)

se = SpectralEmbedding(n_components=2, affinity='precomputed')
X = se.fit_transform(sims)

plt.close('all')
plt.figure(1)
plt.clf()

colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
for k, col in zip(range(n_clusters_), colors):
    class_members = labels == k
    cluster_center = X[cluster_centers_indices[k]]
    plt.plot(X[class_members, 0], X[class_members, 1], col + '.')
    plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,
             markeredgecolor='k', markersize=14)
    for x in X[class_members]:
        plt.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col)

plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()       

但是,我不明白SpectralEmbedding到底发生了什么。请让我知道它的作用?使用SpectralEmbedding绘制相似度值是否正确?

0 个答案:

没有答案