我在tkinter画布上有两点。我需要一个函数来确定它们之间绘制的线最接近(N,NW,W SW,S等)哪个基本方向(方向重要)?我该怎么做呢?请注意,在画布中,左上角是(0,0)。
我试过了:
def dot_product(self, v, w):
return v[0]*w[0]+v[1]*w[1]
def inner_angle(self, v, w):
cosx=self.dot_product(v,w)/(sqrt(v[0]**2+v[1]**2)*sqrt(w[0]**2+w[1]**2))
rad=acos(cosx)
return rad*180/pi
def getAngle(self, A, B):
inner=self.inner_angle(A,B)
det = A[0]*B[1]-A[1]*B[0]
if det<0:
return inner
else:
return 360-inner
和
def getBearing(self, pointA, pointB):
if (type(pointA) != tuple) or (type(pointB) != tuple):
raise TypeError("Only tuples are supported as arguments")
lat1 = math.radians(pointA[0])
lat2 = math.radians(pointB[0])
diffLong = math.radians(pointB[1] - pointA[1])
x = math.sin(diffLong) * math.cos(lat2)
y = math.cos(lat1) * math.sin(lat2) - (math.sin(lat1) * math.cos(lat2) * math.cos(diffLong))
initial_bearing = math.atan2(x, y)
initial_bearing = math.degrees(initial_bearing)
compass_bearing = (initial_bearing + 360) % 360
return compass_bearing
(我用这个函数来获取方向(代码不完整,它更像是一个例子))
def findDirection(self, p1, p2):
bearing = self.getBearing(p1, p2) # OR getAngle()
print(bearing)
index = [180, 0]
closest = min(index, key=lambda x:abs(x-bearing))
if closest == 10:
print(str(bearing) + " : UP")
elif closest == 360:
print(str(bearing) + " : DOWN")
elif closest == 0:
print(str(bearing) + " : RIGHT")
elif closest == 180:
print(str(bearing) + " : LEFT")
这些都不起作用。结果似乎不够一致,无法使用。 有没有更好的方法呢?
答案 0 :(得分:0)
我希望这是有帮助的 - 我使用基于tkinter构建的Python turtle为我的方便实现了它。我将乌龟变成 logo 模式,这使得北方0度和正方向角(即东方为90度)像指南针一样。乌龟方法towards()
完成了你想要的大部分工作,所以我在计算基数方向时试图模仿它:
from random import randrange
from turtle import Turtle, Screen
from math import pi, atan2, degrees
DIRECTIONS = ['N', 'NNE', 'NE', 'ENE', 'E', 'ESE', 'SE', 'SSE', 'S', 'SSW', 'SW', 'WSW', 'W', 'WNW', 'NW', 'NNW']
BUCKET = 360.0 / len(DIRECTIONS)
X, Y = 0, 1
SIZE = 500
def onclick_handler(x, y):
# Draw random vector
yertle.reset()
yertle.hideturtle()
yertle.penup()
start = (randrange(-SIZE//2, SIZE//2), randrange(-SIZE//2, SIZE//2))
end = (randrange(-SIZE//2, SIZE//2), randrange(-SIZE//2, SIZE//2))
yertle.goto(start)
yertle.dot()
yertle.showturtle()
yertle.pendown()
yertle.setheading(yertle.towards(end))
yertle.goto(end)
# Compute vector direction
x, y = end[X] - start[X], end[Y] - start[Y]
angle = round(degrees(atan2(y, -x) - pi / 2), 10) % 360.0
direction = DIRECTIONS[round(angle / BUCKET) % len(DIRECTIONS)]
screen.title("{} degress is {}".format(round(angle, 2), direction))
yertle = Turtle()
screen = Screen()
screen.mode('logo')
screen.setup(SIZE, SIZE)
screen.onclick(onclick_handler)
onclick_handler(0, 0)
screen.mainloop()
程序绘制一条随机线(具有明显的起点和方向)并计算可以在窗口标题中找到的基本方向。单击窗口会生成一个新行和计算。
您应该能够通过编辑DIRECTIONS
变量来处理8或32个罗盘点。
答案 1 :(得分:0)
以下是我建议的方法,以确定最接近由其端点[A, B]
和point_a
定义的线段point_b
所指向的指南针方向:
point_a
在屏幕坐标(Y轴向下)中定义了点,请致电
get_bearings(point_a, point_b)
如果标准中定义的点数 笛卡尔坐标(Y轴向上),调用assign_bearing_to_compass(point_a, point_b)
(代码下面的测试显示了在标准坐标和屏幕坐标中使用点的结果。)
import math
def _change_origin_of_point_b_to_point_a(point_a, point_b):
# uses standard Y axis orientation, not screen orientation
return (point_b[0] - point_a[0], point_b[1] - point_a[1])
def _calc_angle_segment_a_b_with_x_axis(point_a, point_b):
# uses standard Y axis orientation, not screen orientation
xa, ya = point_a
xb, yb = _change_origin_of_point_b_to_point_a(point_a, point_b)
return math.atan2(yb, xb)
def determine_bearing_in_degrees(point_a, point_b):
"""returns the angle in degrees that line segment [point_a, point_b)]
makes with the horizontal X axis
"""
# uses standard Y axis orientation, not screen orientation
return _calc_angle_segment_a_b_with_x_axis(point_a, point_b) * 180 / math.pi
def assign_bearing_to_compass(point_a, point_b):
"""returns the standard bearing of line segment [point_a, point_b)
"""
# uses standard Y axis orientation, not screen orientation
compass = {'W' : [157.5, -157.5],
'SW': [-157.5, -112.5],
'S' : [-112.5, -67.5],
'SE': [-67.5, -22.5],
'E' : [-22.5, 22.5],
"NE": [22.5, 67.5],
'N' : [67.5, 112.5],
'NW': [112.5, 157.5]}
bear = determine_bearing_in_degrees(point_a, point_b)
for direction, interval in compass.items():
low, high = interval
if bear >= low and bear < high:
return direction
return 'W'
def _convert_to_negative_Y_axis(compass_direction):
"""flips the compass_direction horizontally
"""
compass_conversion = {'E' : 'E',
'SE': 'NE',
'S' : 'N',
'SW': 'NW',
'W' : 'W',
"NW": 'SW',
'N' : 'S',
'NE': 'SE'}
return compass_conversion[compass_direction]
def get_bearings(point_a, point_b):
return _convert_to_negative_Y_axis(assign_bearing_to_compass(point_a, point_b))
(使用标准三角圆象限)
point_a = (0, 0)
points_b = [(1, 0), (1, 3), (1, 2), (1, 1), (2, 1), (3, 1), (0, 1)]
print("point_a, point_b Y_up Y_down (in screen coordinates)")
for point_b in points_b:
print(point_a, ' ', point_b, ' ', assign_bearing_to_compass(point_a, point_b), ' ', get_bearings(point_a, point_b))
point_a, point_b Y_up Y_down (in screen coordinates)
(0, 0) (1, 0) E E
(0, 0) (1, 3) N S
(0, 0) (1, 2) NE SE
(0, 0) (1, 1) NE SE
(0, 0) (2, 1) NE SE
(0, 0) (3, 1) E E
(0, 0) (0, 1) N S
point_a = (0, 0)
points_b = [(-1, 0), (-1, 3), (-1, 2), (-1, 1), (-2, 1), (-3, 1), (0, 1)]
print("point_a, point_b Y_up Y_down (in screen coordinates)")
for point_b in points_b:
print(point_a, ' ', point_b, ' ', assign_bearing_to_compass(point_a, point_b), ' ', get_bearings(point_a, point_b))
point_a, point_b Y_up Y_down (in screen coordinates)
(0, 0) (-1, 0) W W
(0, 0) (-1, 3) N S
(0, 0) (-1, 2) NW SW
(0, 0) (-1, 1) NW SW
(0, 0) (-2, 1) NW SW
(0, 0) (-3, 1) W W
(0, 0) (0, 1) N S
point_a = (0, 0)
points_b = [(-1, 0), (-1, -3), (-1, -2), (-1, -1), (-2, -1), (-3, -1), (0, -1)]
print("point_a, point_b Y_up Y_down (in screen coordinates)")
for point_b in points_b:
print(point_a, ' ', point_b, ' ', assign_bearing_to_compass(point_a, point_b), ' ', get_bearings(point_a, point_b))
point_a, point_b Y_up Y_down (in screen coordinates)
(0, 0) (-1, 0) W W
(0, 0) (-1, -3) S N
(0, 0) (-1, -2) SW NW
(0, 0) (-1, -1) SW NW
(0, 0) (-2, -1) SW NW
(0, 0) (-3, -1) W W
(0, 0) (0, -1) S N
point_a = (0, 0)
points_b = [(1, 0), (1, -3), (1, -2), (1, -1), (2, -1), (3, -1), (0, -1)]
print("point_a, point_b Y_up Y_down (in screen coordinates)")
for point_b in points_b:
print(point_a, ' ', point_b, ' ', assign_bearing_to_compass(point_a, point_b), ' ', get_bearings(point_a, point_b))
point_a, point_b Y_up Y_down (in screen coordinates)
(0, 0) (1, 0) E E
(0, 0) (1, -3) S N
(0, 0) (1, -2) SE NE
(0, 0) (1, -1) SE NE
(0, 0) (2, -1) SE NE
(0, 0) (3, -1) E E
(0, 0) (0, -1) S N
答案 2 :(得分:0)
要获得一个基本方向,需要一个参考相关方向的角度(在这种情况下是度数)的字典:
directions = {0:"N", 45:"NE", 90:"E", 135:"SE", 180:"S",
225:"SW", 270:"W", 315:"NW", 360:"N"}
请注意,向北增加两次,因为在两点之间获得350度的角度会给出西北,当它应该向北时。
让Tkinter画布上的两个点a
和b
分别具有坐标(x1, y1)
和(x2, y2)
。因此,它们之间的差异(dx
和dy
)是x1-x2
和y1-y2
。
您现在可以执行dy/dx
的反正切以获得角度。值得指出的是,如果dx
为0,则它将除以0.您可以通过添加if not dx: return "N"
来阻止此操作,如果点具有相同的x值,则返回North。
此外,如果dx大于0,那么它将返回相同的值,就好像它小于0.这是因为切线图的周期为180度。要解决此问题,您只需添加if dx > 0: angle += 180
。
现在您有一个角度,您可以使用Pythons内置的directions
函数min
在之前定义的min(self.directions, key=lambda x: abs(x-angle))
字典中引用它。这将返回字典中指定的最接近的度数。为了获得基数值,我们可以在字典中访问它。
将所有这些放在一起会产生以下功能(TLDR):
from math import atan, degrees
...
def get_cardinal(a, b):
dx, dy = a[0]-b[0], a[1]-b[1]
if not dx:
return "N"
angle = degrees(atan(dy/dx))+90 #+90 to take into account TKinters coordinate system.
if dx > 0:
angle += 180
return directions[min(directions, key=lambda x: abs(x-angle))]
这与directions
词典相结合,可以为您提供答案。