给定一个pandas数据帧,我想根据其中一列排除对应于异常值的行(Z值= 3)。
数据框如下所示:
df.dtypes
_id object
_index object
_score object
_source.address object
_source.district object
_source.price float64
_source.roomCount float64
_source.size float64
_type object
sort object
priceSquareMeter float64
dtype: object
对于这一行:
dff=df[(np.abs(stats.zscore(df)) < 3).all(axis='_source.price')]
引发以下异常:
-------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-68-02fb15620e33> in <module>()
----> 1 dff=df[(np.abs(stats.zscore(df)) < 3).all(axis='_source.price')]
/opt/anaconda3/lib/python3.6/site-packages/scipy/stats/stats.py in zscore(a, axis, ddof)
2239 """
2240 a = np.asanyarray(a)
-> 2241 mns = a.mean(axis=axis)
2242 sstd = a.std(axis=axis, ddof=ddof)
2243 if axis and mns.ndim < a.ndim:
/opt/anaconda3/lib/python3.6/site-packages/numpy/core/_methods.py in _mean(a, axis, dtype, out, keepdims)
68 is_float16_result = True
69
---> 70 ret = umr_sum(arr, axis, dtype, out, keepdims)
71 if isinstance(ret, mu.ndarray):
72 ret = um.true_divide(
TypeError: unsupported operand type(s) for +: 'NoneType' and 'NoneType'
和
的返回值np.isreal(df['_source.price']).all()
是
True
为什么我会得到上述异常,如何排除异常值?
答案 0 :(得分:2)
每当遇到此类问题时都使用此布尔值:
df=pd.DataFrame({'Data':np.random.normal(size=200)}) #example
df[np.abs(df.Data-df.Data.mean())<=(3*df.Data.std())] #keep only the ones that are within +3 to -3 standard deviations in the column 'Data'.
df[~(np.abs(df.Data-df.Data.mean())>(3*df.Data.std()))] #or the other way around
答案 1 :(得分:0)
我相信你可以用异常值创建一个布尔过滤器,然后选择它的对位。
outliers = stats.zscore(df['_source.price']).apply(lambda x: np.abs(x) == 3)
df_without_outliers = df[~outliers]
答案 2 :(得分:0)
如果要使用给定数据集的Interquartile Range(即IQR,如下面的Wikipedia image所示)(Ref):
def Remove_Outlier_Indices(df):
Q1 = df.quantile(0.25)
Q3 = df.quantile(0.75)
IQR = Q3 - Q1
trueList = ~((df < (Q1 - 1.5 * IQR)) |(df > (Q3 + 1.5 * IQR)))
return trueList
基于上述消除函数,可以获得根据数据集统计内容的异常值子集:
# Arbitrary Dataset for the Example
df = pd.DataFrame({'Data':np.random.normal(size=200)})
# Index List of Non-Outliers
nonOutlierList = Remove_Outlier_Indices(df)
# Non-Outlier Subset of the Given Dataset
dfSubset = df[nonOutlierList]