熊猫数据框 - 删除异常值

时间:2017-09-15 17:43:06

标签: python pandas scipy

给定一个pandas数据帧,我想根据其中一列排除对应于异常值的行(Z值= 3)。

数据框如下所示:

df.dtypes
_id                   object
_index                object
_score                object
_source.address       object
_source.district      object
_source.price        float64
_source.roomCount    float64
_source.size         float64
_type                 object
sort                  object
priceSquareMeter     float64
dtype: object

对于这一行:

dff=df[(np.abs(stats.zscore(df)) < 3).all(axis='_source.price')]

引发以下异常:

-------------------------------------------------------------------------    
TypeError                                 Traceback (most recent call last)
<ipython-input-68-02fb15620e33> in <module>()
----> 1 dff=df[(np.abs(stats.zscore(df)) < 3).all(axis='_source.price')]

/opt/anaconda3/lib/python3.6/site-packages/scipy/stats/stats.py in zscore(a, axis, ddof)
   2239     """
   2240     a = np.asanyarray(a)
-> 2241     mns = a.mean(axis=axis)
   2242     sstd = a.std(axis=axis, ddof=ddof)
   2243     if axis and mns.ndim < a.ndim:

/opt/anaconda3/lib/python3.6/site-packages/numpy/core/_methods.py in _mean(a, axis, dtype, out, keepdims)
     68             is_float16_result = True
     69 
---> 70     ret = umr_sum(arr, axis, dtype, out, keepdims)
     71     if isinstance(ret, mu.ndarray):
     72         ret = um.true_divide(

TypeError: unsupported operand type(s) for +: 'NoneType' and 'NoneType'

的返回值
np.isreal(df['_source.price']).all()

True

为什么我会得到上述异常,如何排除异常值?

3 个答案:

答案 0 :(得分:2)

每当遇到此类问题时都使用此布尔值:

df=pd.DataFrame({'Data':np.random.normal(size=200)})  #example 
df[np.abs(df.Data-df.Data.mean())<=(3*df.Data.std())] #keep only the ones that are within +3 to -3 standard deviations in the column 'Data'.
df[~(np.abs(df.Data-df.Data.mean())>(3*df.Data.std()))] #or the other way around

答案 1 :(得分:0)

我相信你可以用异常值创建一个布尔过滤器,然后选择它的对位。

outliers = stats.zscore(df['_source.price']).apply(lambda x: np.abs(x) == 3)
df_without_outliers = df[~outliers]

答案 2 :(得分:0)

如果要使用给定数据集的Interquartile Range(即IQR,如下面的Wikipedia image所示)(Ref):

def Remove_Outlier_Indices(df):
    Q1 = df.quantile(0.25)
    Q3 = df.quantile(0.75)
    IQR = Q3 - Q1
    trueList = ~((df < (Q1 - 1.5 * IQR)) |(df > (Q3 + 1.5 * IQR)))
    return trueList

基于上述消除函数,可以获得根据数据集统计内容的异常值子集:

# Arbitrary Dataset for the Example
df = pd.DataFrame({'Data':np.random.normal(size=200)})

# Index List of Non-Outliers
nonOutlierList = Remove_Outlier_Indices(df)

# Non-Outlier Subset of the Given Dataset
dfSubset = df[nonOutlierList]

interquartile range