我试图实现一种不受可逆残差矩阵破坏的块共轭梯度算法;但是我得到了荒谬的结果(在每次迭代中,Rcurrent
的等级应该变小,而不是增加)。它在论文中提出"无击穿块共轭梯度法"郝姬和李耀航。
以下是算法:
这是我在朱莉娅的实施:
function orth(M::Matrix)
matrixRank = rank(M)
Ufactor = svdfact(M)[:U]
return Ufactor[:,1:matrixRank]
end
function BFBCG(A::Matrix, Xcurrent::Matrix, M::Matrix, tol::Number, maxit::Number, Rcurrent::Matrix)
# initialization
#Rcurrent = B - A*Xcurrent;
Zcurrent = M*Rcurrent;
Pcurrent = orth(Zcurrent);
Xnext::Matrix = ones(size(Xcurrent))
# iterative method
for i = 0:maxit
Qcurrent = A*Pcurrent
acurrent = (Pcurrent' * Qcurrent)\(Pcurrent'*Rcurrent)
Xnext = Xcurrent+Pcurrent*acurrent
Rnext = Rcurrent-Qcurrent*acurrent
# if Residual norm of columns in Rcurrent < tol, stop
Znext = M*Rnext
bcurrent = -(Pcurrent' * Qcurrent)\ (Qcurrent'*Znext)
Pnext = orth(Znext+Pcurrent*bcurrent)
Xcurrent = Xnext
Zcurrent = Znext
Rcurrent = Rnext
Pcurrent = Pnext
@printf("\nRANK:\t%d",rank(Rcurrent))
@printf("\nNORM column1:\t%1.8f",vecnorm(Rcurrent[:,1]))
@printf("\nNORM column2:\t%1.8f\n=============",vecnorm(Rcurrent[:,2]))
end
return Xnext
end
这些投入的论文结果:
A = [15 5 4 3 2 1; 5 35 9 8 7 6; 4 9 46 12 11 10; 3 8 12 50 14 13; 2 7 11 14 19 15; 1 6 10 13 15 45]
M = eye(6)
guess = rand(6,2)
R0 = [1 0.537266261211281;2 0.043775211060964;3 0.964458562037146;4 0.622317517840541;5 0.552735938776748;6 0.023323943544997]
X = BFBCG(A,guess,M,tol,9,R0)
是在第三次迭代中达到零的等级。
答案 0 :(得分:3)
该算法有效,并且在第三次迭代中等级变为零。问题是数值不准确,这将使任何矩阵完全排名。要获得更好的结果,请使用rank(Rcurrent, tol)
代替rank(Rcurrent)
,这是考虑到容差的版本。之后,至少在我的机器上,等级降至零。
julia> X = BFBCG(A,guess,M,tol,9,R0)
RANK: 2
NORM column1: 1.78951939
NORM column2: 0.41155080
=============
RANK: 2
NORM column1: 0.97949620
NORM column2: 0.16170799
=============
RANK: 0
NORM column1: 0.00000000
NORM column2: 0.00000000
=============
RANK: 0
NORM column1: 0.00000000
NORM column2: 0.00000000
=============