我想仅在当前行完全由nan
组成时才向前一行填充pandas df。
这意味着fillna(method='ffill', limit = 1)
在我的情况下不起作用,因为它在元素方面有效,而我需要fillna
行。{/ p>
有没有比以下说明更优雅的方式来完成这项任务?
s = df.count(axis = 1)
for d in df.index[1:]:
if s.loc[d] == 0:
i = s.index.get_loc(d)
df.iloc[i] = df.iloc[i-1]
输入
v1 v2
1 1 2
2 nan 3
3 2 4
4 nan nan
输出
v1 v2
1 1 2
2 nan 3
3 2 4
4 2 4
答案 0 :(得分:1)
您可以使用过滤器行的条件来应用ffill
:
m = df.isnull().all(axis=1) | df.notnull().all(axis=1)
print (m)
1 True
2 False
3 True
4 True
dtype: bool
print (df[m])
v1 v2
1 1.0 2.0
3 2.0 4.0
4 NaN NaN
df[m] = df[m].ffill()
print (df)
v1 v2
1 1.0 2.0
2 NaN 3.0
3 2.0 4.0
4 2.0 4.0
编辑:
print (df)
v1 v2
1 1.0 2.0
2 NaN 7.0
3 4.0 8.0
4 NaN NaN
5 2.0 4.0
6 NaN 3.0
7 NaN NaN
m = df.isnull().all(axis=1) | df.notnull().all(axis=1)
print (m)
1 True
2 False
3 True
4 True
5 True
6 False
7 True
dtype: bool
long_str = 'some long helper str'
df[~m] = df[~m].fillna(long_str)
df = df.ffill().replace(long_str, np.nan)
print (df)
v1 v2
1 1.0 2.0
2 NaN 7.0
3 4.0 8.0
4 4.0 8.0
5 2.0 4.0
6 NaN 3.0
7 NaN 3.0