我有轮廓的位置,我如何将图像或视频放在轮廓的相同位置,另一方面,因为我可以减小两者的大小。 我的代码是
import cv2
import numpy as np
#Iniciar camara
captura = cv2.VideoCapture(0)
while(1):
#Caputrar una imagen y convertirla a hsv
_, imagen = captura.read()
hsv = cv2.cvtColor(imagen, cv2.COLOR_BGR2HSV)
img=cv2.imread('calibresult.png')
#Guardamos el rango de colores hsv (azules)
bajos = np.array([100,65,75], dtype=np.uint8)
altos = np.array([130, 255, 255], dtype=np.uint8)
#Crear una mascara que detecte los colores
mask = cv2.inRange(hsv, bajos, altos)
#Filtrar el ruido con un CLOSE seguido de un OPEN
kernel = np.ones((6,6),np.uint8)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
#Difuminamos la mascara para suavizar los contornos y aplicamos filtro canny
blur = cv2.GaussianBlur(mask, (5, 5), 0)
edges = cv2.Canny(mask,1,2)
#Si el area blanca de la mascara es superior a 500px, no se trata de ruido
contours, hier = cv2.findContours(edges,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
areas = [cv2.contourArea(c) for c in contours]
i = 0
for extension in areas:
if extension > 600:
actual = contours[i]#position of countour
approx = cv2.approxPolyDP(actual,0.05*cv2.arcLength(actual,True),True)
if len(approx)==3:
cv2.drawContours(imagen,[actual],0,(0,0,255),2)
cv2.drawContours(mask,[actual],0,(0,0,255),2)
i = i+1
cv2.imshow('mask', mask)
cv2.imshow('Camara', imagen)
tecla = cv2.waitKey(5) & 0xFF
if tecla == 27:
break
cv2.destroyAllWindows()
“actual”是轮廓的位置 例如,我希望代码注册一个矩形的轮廓,并在轮廓的相同位置放置一个图像,所有实时,位置将相对于轮廓的中心
答案 0 :(得分:0)
从http://badecho.com/2012/07/wpf-grid-like-wrappanels/给出的优秀答案:
dst = cv2.imread("destination.jpg", -1)
src = cv2.imread("source.jpg", -1)
gray = cv2.cvtColor(dst, cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray, 130, 255, cv2.THRESH_BINARY)
im2,contours,hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
for contour in contours:
cv2.drawContours(dst, contour, -1, (0,0,255), thickness = 2)
locs = np.where(binary != 0) # Get the non-zero mask locations
# Case #1 - Other image is grayscale and source image is colour
if len(dst.shape) == 3 and len(src.shape) != 3:
dst[locs[0], locs[1]] = src[locs[0], locs[1], None]
# Case #2 - Both images are colour or grayscale
elif (len(dst.shape) == 3 and len(src.shape) == 3) or (len(dst.shape) == 1 and len(src.shape) == 1):
dst[locs[0], locs[1]] = src[locs[0], locs[1]]
# Otherwise, we can't do this
else:
raise Exception("Incompatible input and output dimensions")