我目前正在研究一个从卫星图像识别足球场的项目。
这是足球场的顶视图卫星图像
我使用了模糊介质功能来清除此图像中的所有小杂质。后来我只选择了图像的绿色部分,并使用以下命令制作了蒙版
cv2.inRange(hsv_img,light_green,dark_green)
其中light_green和dark_green是我在hsv中绿色的范围。
等我戴上口罩之后
我得到这个作为输出:
因为它有一些杂质,所以我使用了中模糊功能
中位数= cv2.medianBlur(image,45)
我得到的输出是:
如您所见,我有很多轮廓,中间有主要的矩形轮廓。我需要一种从图像中选择矩形轮廓的算法,而我不得不忽略其余的轮廓。之后我该怎么办?
答案 0 :(得分:4)
我的方法是:
假设输入是您计算出的“中位数”结果:
图像中位数(输入):
首先,导入必要的库并纯化图像。
import cv2
import numpy as np
# assuming you have the result image store in median
# median = cv2.imread("abc.jpg", 0)
image_gray = median
image_gray = np.where(image_gray > 30, 255, image_gray)
image_gray = np.where(image_gray <= 30, 0, image_gray)
image_gray = cv2.adaptiveThreshold(image_gray, 255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 115, 1)
找到轮廓,然后根据其形状应用滤镜功能。
_, contours, _ = cv2.findContours(image_gray, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
rect_cnts = []
for cnt in contours:
peri = cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, 0.04 * peri, True)
(x, y, w, h) = cv2.boundingRect(cnt)
ar = w / float(h)
if len(approx) == 4: # shape filtering condition
rect_cnts.append(cnt)
找到面积最大的一个,并绘制结果。
max_area = 0
football_square = None
for cnt in rect_cnts:
(x, y, w, h) = cv2.boundingRect(cnt)
if max_area < w*h:
max_area = w*h
football_square = cnt
# Draw the result
image = cv2.cvtColor(image_gray, cv2.COLOR_GRAY2RGB)
cv2.drawContours(image, [football_square], -1, (0, 0,255), 5)
cv2.imshow("Result Preview", image)
cv2.waitKey()
结果预览:
此答案来自PyImageSearch“ OpenCV shape detection”上的精彩文章。谢谢。
答案 1 :(得分:1)
因此,请注意:
程序的工作方式如下:
首先,它读取图像并确定每个像素是黑色还是白色。接下来,它按行读取白色区域的开始和结束位置。此后,它会聚集需要至少一个像素重叠且每个区域必须在连续线上的区域。 请注意,每行仅连接一个区域,例如,如果您具有星形形状,其中两个部分在较低点连接,则此代码将无法正常工作,您将需要进行一些重做(请参见下文,我的意思的示例)。最后,它会检查最大的区域,并在其周围添加一条红色的粗线。
from PIL import Image
from copy import copy
def area(lst):
'''
:param lst: a list of tuples where each subsequent tuple indicates a row and the first two values indicate the start and end values of the row
:return: the total area of the shape described by these tuples
'''
pixels_counted = 0
for i in lst:
pixels_counted += i[1] - i[0]
return pixels_counted
def get_image(location):
'''
:param location: where your image is saved
:return:
- an Image class
- a list of lists where everything is either a 1 (white) or 0 (black)
- a picture class
'''
picture = Image.open(location)
rgb_im = picture.convert('RGB')
w, y = picture.size
rgb = [[1 if sum(rgb_im.getpixel((i, j))) < 255 * 1.5 else 0 for i in range(w)] for j in range(y)]
return picture, rgb, rgb_im
def get_borders(rgb):
borders = []
for i in range(len(rgb)):
border = []
if 0 in rgb[i]:
start = rgb[i].index(0)
for j in range(start, len(rgb[i])):
if start != -1 and rgb[i][j] == 1:
border.append((start, j - 1, i))
start = -1
if start == -1:
if rgb[i][j] == 0:
start = j
if start != -1:
border.append((start, j - 1, i))
borders.append(copy(border))
return borders
def get_rectangles(borders):
'''
:param borders: a list of lists, for each row it lists where an area starts or ends
:return: a list of areas
This function reads from the top to the bottom. it tries to group the largest areas together. This will work
as long as these areas are relatively simple, however, if they split up (like a donut for instance) this will
definitely raise issues.
'''
rectangles = []
started = []
for i in range(len(borders)):
started_new = []
started_borders = [z[1] for z in sorted([(z[1] - z[0], z) for z in borders[i]], reverse=True)]
for region in started_borders:
existing = False
left = region[0]
right = region[1]
started_areas = [z[1] for z in sorted([(area(z), z) for z in started], reverse=True)]
# If in the previous row an area existsed in that overlaps with this region, this region is connected to it
for k in started_areas:
if right < k[-1][0] or left > k[-1][1]:
continue
started_new.append(k + [region])
existing = True
del started[started.index(k)]
# If there was no part in the previous row that already connects to it, it will be added to the list of
# shapes as a new area of itself
if not existing:
started_new.append([region])
for k in started:
rectangles.append(copy(k))
started = copy(started_new)
# Add any remaining areas to the list
for i in started_new:
rectangles.append(i)
return rectangles
def get_biggest_rectangle(rectangles):
areas = []
for i in rectangles:
areas.append((area(i), i))
probable_rectangle = sorted(areas)[-1][1]
return probable_rectangle
def show_image(rgb, rgb_im, probable_rectangle):
# I honestly cannot figure out how to change the picture variable, so I just make a new figure
w, y = len(rgb[0]), len(rgb)
img = Image.new('RGB', (w, y), "black")
pixels = img.load()
for i in range(w):
for j in range(y):
pixels[i, j] = rgb_im.getpixel((i, j)) # set the colour accordingly
for i in probable_rectangle:
pixels[i[0], i[-1]] = (255, 0, 0)
pixels[i[1], i[-1]] = (255, 0, 0)
for y in range(-10, 10):
for z in range(-10, 10):
pixels[i[0] + y, i[-1] + z] = (255, 0, 0)
pixels[i[1] + y, i[-1] + z] = (255, 0, 0)
img.show()
if __name__ == '__main__':
picture, rgb, rgb_im = get_image('C:\\Users\\Nathan\\Downloads\\stack.jpg')
borders = get_borders(rgb)
rectangles = get_rectangles(borders)
probable_rectangle = get_biggest_rectangle(rectangles)
show_image(rgb, rgb_im, probable_rectangle)
返回: