如何多次运行函数并将结果写入列表?

时间:2017-09-07 19:59:23

标签: r list matrix replicate

我有一个创建矩阵的函数,我想要调用这个函数一千次,最后我有1000个矩阵的列表。这是一个例子:

set.seed(1)
gen_mat <- function(x) matrix(c(1, 1, 1, x + rnorm(1)), nrow = 2)

现在,我尝试了replicate(10, gen_mat(1)),但这会返回一个数组,而不是列表。怎么做?

3 个答案:

答案 0 :(得分:4)

上述答案,评论和我自己的答案的组合。当然,我更喜欢我的。另外,我认为base R的上述答案中存在错误。

n <- 10

# give 1 to gen_mat n-times
lapply(rep(1, n), gen_mat)

# replicate n-times 
replicate(n, gen_mat(1), simplify=FALSE)

# lapply returns error if FUN is not function or 
# the function is not taking an argument. Hence a dummy function.
lapply(seq_len(n), function(x) gen_mat(1))

微观标记三种方法

我为n使用了更大的值,但我的桌面上的结果与较小的n相似。为此,replicate比其他两种方法花费的时间更长。

set.seed(1)
gen_mat <- function(x) matrix(c(1, 1, 1, x + rnorm(1)), nrow = 2)
n <- 1000 

library(microbenchmark)
library(ggplot2)

mb <- microbenchmark(
  lap1 = {lapply(rep(1, n), gen_mat)},
  repl = {replicate(n, gen_mat(1), simplify=FALSE)},
  lap2 = {lapply(seq_len(n), function(x) gen_mat(1))},
  times = 10000L
)

mb
# Unit: milliseconds
# expr      min       lq     mean   median       uq      max neval cld
# lap1 2.839435 3.494157 4.806954 3.854269 5.611413 103.0111 10000  a 
# repl 3.091829 3.777199 5.140789 4.165856 6.013591 101.4318 10000   b
# lap2 3.131491 3.761274 5.089170 4.140316 5.939075 101.1983 10000   b

autoplot(mb)

enter image description here

答案 1 :(得分:3)

base R

n <- 10
lapply(seq_len(n), gen_mat(1))

purrr

library(purrr)
map(seq_len(n), ~gen_mat(1))

答案 2 :(得分:1)

仅添加purrr::rerunreplicate(..., simplify = FALSE)的简写

library(purrr)
rerun(10, gen_mat(1))

# [[1]]
#      [,1]     [,2]
# [1,]    1 1.000000
# [2,]    1 1.918977

# [[2]]
#      [,1]     [,2]
# [1,]    1 1.000000
# [2,]    1 1.782136

# [[3]]
#      [,1]     [,2]
# [1,]    1 1.000000
# [2,]    1 1.074565

# [[4]]
#      [,1]       [,2]
# [1,]    1  1.0000000
# [2,]    1 -0.9893517

# [[5]]
#      [,1]     [,2]
# [1,]    1 1.000000
# [2,]    1 1.619826

# [[6]]
#      [,1]      [,2]
# [1,]    1 1.0000000
# [2,]    1 0.9438713

# [[7]]
#      [,1]      [,2]
# [1,]    1 1.0000000
# [2,]    1 0.8442045

# [[8]]
#      [,1]       [,2]
# [1,]    1  1.0000000
# [2,]    1 -0.4707524

# [[9]]
#      [,1]      [,2]
# [1,]    1 1.0000000
# [2,]    1 0.5218499

# [[10]]
#      [,1]     [,2]
# [1,]    1 1.000000
# [2,]    1 1.417942