我希望运行Nobel函数10次,得到一个Percent_lnOR和Percent_Rho值的表,这样每次迭代我都会得到这两个值。
如何多次运行该函数(比方说10次),并获得Percent_lnOR和Percent_Rho的值表?
library(gtools)
Nobel<-function(n){
p11hat<-rep(0,n)
p12hat<-rep(0,n)
p21hat<-rep(0,n)
p22hat<-rep(0,n)
Rho<- rep(0,n)
AsyVarRho<-rep(0,n)
OddsRatio<-rep(0,n)
lnOR<-rep(0,n)
AsyVarOR<-rep(0,n)
count_lnOR<-rep(0,n)
count_Rho<-rep(0,n)
for (i in 1:n) {
MB <- rdirichlet(1, c(1,1,1,1))
#print (MB)
Sample<-rmultinom(n, 100, prob= c(MB[1,1], MB[1,2], MB[1,3], MB[1,4]))
p11hat <- Sample[1,i]/100
p12hat <- Sample[2,i]/100
p21hat <- Sample[3,i]/100
p22hat <- Sample[4,i]/100
p1p <- p11hat + p12hat
p2p <- 1-p11hat-p12hat
pp1 <- p11hat+p21hat
pp2 <- 1-p11hat-p21hat
Var1 <- p11hat*(1-p11hat)
Var2 <- p12hat*(1-p12hat)
Var3 <- p21hat*(1-p21hat)
Cov12 <- -p11hat*p12hat
Cov13 <- -p11hat*p21hat
Cov23 <- -p12hat*p21hat
U <- sqrt(p1p*p2p*pp1*pp2)
V <- p11hat*p2p*pp2 - p12hat*p2p*pp1 - p21hat*p1p*pp2 + (1-p11hat-p12hat-p21hat)*p1p*pp1
DUDx <- (1-p1p-pp1)*(p1p+pp1-2*p1p*pp1)
DUDy <- pp1*(1-pp1)*(1-2*p1p)
DUDz <- p1p*(1-p1p)*(1-2*pp1)
DVDx <- 1-p1p-pp1
DVDy <- -pp1
DVDz <- -p1p
DfDx <- (1/sqrt(U))*DVDx - 0.5*U^(-1.5)*V*DUDx
DfDy <- (1/sqrt(U))*DVDy - 0.5*U^(-1.5)*V*DUDy
DfDz <- (1/sqrt(U))*DVDz - 0.5*U^(-1.5)*V*DUDz
AsyVarRho <- Var1*DfDx^2 + Var2*DfDy^2 + Var3*DfDz^2 + 2*Cov12*DfDx*DfDy +
2*Cov13*DfDx*DfDz + 2*Cov23*DfDy*DfDz
OddsRatio <- p11hat*(1-p11hat-p12hat-p21hat)/(p12hat*p21hat)
lnOR <- log(OddsRatio)
AsyVarOR <- (1/p11hat + 1/p12hat + 1/p21hat + 1/(1 - p11hat - p12hat - p21hat))
Rho <- V/sqrt(U)
z1<-lnOR/sqrt(AsyVarOR/100)
z2<- Rho/ sqrt(AsyVarRho/100)
count_lnOR<-ifelse(abs(z1)>1.96,1,0)
count_Rho<-ifelse(abs(z2)>1.96,1,0)
}
df <- data.frame(p11hat, p12hat, p21hat, Rho, AsyVarRho, OddsRatio,lnOR, AsyVarOR,count_lnOR,count_Rho )
return(df)
}
Y<-Nobel(10)
Y
C_lnOR<-as.matrix(table( Y$count_lnOR))
C_Rho<-as.matrix(table( Y$count_Rho))
Percent_lnOR<- (C_lnOR[2]/ sum(C_lnOR[1], C_lnOR[2]))*100
Percent_Rho<- (C_Rho[2]/ sum(C_Rho[1], C_Rho[2]))*100
答案 0 :(得分:2)
这个怎么样:
replicate(n = 10, expr = {
Y <- Nobel(10)
C_lnOR <- as.matrix(table(Y$count_lnOR))
C_Rho <- as.matrix(table(Y$count_Rho))
Percent_lnOR <- (C_lnOR[2] / sum(C_lnOR[1], C_lnOR[2])) * 100
Percent_Rho <- (C_Rho[2] / sum(C_Rho[1], C_Rho[2])) * 100
c(pct_lnOR = Percent_lnOR, pct_rho = Percent_Rho)
})
它应该给你一个很好的矩阵,其中rownames是“pct_lnOR”和“pct_rho”,每列都是一个复制。
答案 1 :(得分:0)
你的功能很好,你只需要rbind(读取row-bind)迭代调用的结果。例如,在最简单的例子中:
Y <- data.frame()
myvector <- c(1:10) #put your values here
for i in 1:10
{
Y <- rbind(Y, Nobel(myvector[i]))
}