我想在Keras中建立一个模型,这样的层连接如下:
MaxPooling
/\
/ \
pooled poolmask convLayer
\ /
\ /
upsample
这种类型的连接是Segnet,在Caffe中很容易做到。但我不知道如何用keras实现。
有人可以帮助我吗?
答案 0 :(得分:3)
在Keras也很容易,但你需要使用Keras Functional API。
您可以在此处找到示例https://keras.io/getting-started/functional-api-guide/
代码:
from keras.layers import Input, Embedding, LSTM, Dense
from keras.models import Model
# Headline input: meant to receive sequences of 100 integers, between 1 and 10000.
# Note that we can name any layer by passing it a "name" argument.
main_input = Input(shape=(100,), dtype='int32', name='main_input')
# This embedding layer will encode the input sequence
# into a sequence of dense 512-dimensional vectors.
x = Embedding(output_dim=512, input_dim=10000, input_length=100)(main_input)
# A LSTM will transform the vector sequence into a single vector,
# containing information about the entire sequence
lstm_out = LSTM(32)(x)
auxiliary_input = Input(shape=(5,), name='aux_input')
x = keras.layers.concatenate([lstm_out, auxiliary_input])
auxiliary_output = Dense(1, activation='sigmoid', name='aux_output')(lstm_out)
# We stack a deep densely-connected network on top
x = Dense(64, activation='relu')(x)
x = Dense(64, activation='relu')(x)
x = Dense(64, activation='relu')(x)
# And finally we add the main logistic regression layer
main_output = Dense(1, activation='sigmoid', name='main_output')(x)
model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output, auxiliary_output])
model.compile(optimizer='rmsprop', loss='binary_crossentropy',
loss_weights=[1., 0.2])
model.fit([headline_data, additional_data], [labels, labels],
epochs=50, batch_size=32)