我试图将动物的行为(活动)和新陈代谢(resBMR)联系起来。我使用混合模型分析和包MCMCglmm。我将试验和季节作为固定因素。此外,我们还有其他两个固定效果:SEX和RESP。 RESP代表对冬季的反应类型:R,NR和HR。
我准备了一个双变量混合模型。该模型应该允许我根据RESP(3个级别)拟合单独的方差 - 协方差矩阵。 代码如下:
prior<-list(R=list(R1=list(V=diag(2), nu=1.002),R2=list(V=diag(2), nu=1.002),R3=list(V=diag(2), nu=1.002)),G=list(G1=list(V=diag(2), nu=1.002),G2=list(V=diag(2), nu=1.002),G3=list(V=diag(2), nu=1.002)))
RESP <- MCMCglmm (cbind(resBMR,activity)
~trait-1+trait:trial + trait:SEX + trait:RESP + trait:season,
random=~us(at.level(RESP,"NR"):trait):ID+us(at.level(RESP,"R"):trait):ID+us(at.level(RESP, "HR"):trait):ID,
rcov = us(at.level(RESP,"NR"):trait):units+us(at.level(RESP,"R"):trait):units +us(at.level(RESP, "HR"):trait):units,
family=c("gaussian","gaussian"),prior=prior,data=data)
该模型有效,但我想计算依赖性状的截距 - 截距相关性如下:
cor_int_intR <- RESP$VCV[,"at.level(RESP,"NR"):traitactivity:at.level(RESP, "NR"):traitresBMR.ID"]
/sqrt(RESP$VCV[,"at.level(RESP,"NR"):traitactivity:at.level(RESP,"NR"):traitactivity.ID"]
*RESP$VCV[,"at.level(RESP,"NR"):traitresBMR:at.level(RESP,"NR"):traitresBMR.ID"])
我得到了错误:
错误:意外的符号 &#34;&cor_int_intR LT; -RESP $ VCV [&#34; at.level(RESP,&#34; NR&#34;
我检查了模型的VCV,它看起来完全一样。但是当我在引文中写下NR时,它会改变颜色并告诉我&#34;意外的令牌&#39; NR&#39; &#34;
知道这有什么不对吗?
编辑:这是我的数据框示例:
ID RESP SEX trial season resBMR activity
1 HR male 1 lato 0.250052984 0.3536
1 HR male 2 lato NA -0.15325
1 HR male 3 zima 0.239365502 1.63709
1 HR male 4 zima NA 0.90206
4 R male 1 lato 0.184630641 0.72714
4 R male 2 lato NA 0.9956
4 R male 3 zima 0.222260753 0.4192
4 R male 4 zima NA -1.78506
5 NR male 1 lato 0.269151827 -0.2999
5 NR male 2 lato NA -0.19877
5 NR male 3 zima 0.22583699 0.95727
5 NR male 4 zima NA -0.76502
6 HR male 1 lato 0.244090325 0.18667
6 HR male 2 lato NA -0.42045
6 HR male 3 zima 0.261126729 0.13811
6 HR male 4 zima NA -0.70864
7 NR female 1 lato 0.252336196 0.78315
7 NR female 2 lato NA 1.12088
7 NR female 3 zima 0.19488432 0.30034
7 NR female 4 zima NA -0.95369
8 NR female 1 lato 0.216474311 -0.89225
8 NR female 2 lato NA -0.23443
8 NR female 3 zima 0.241733394 0.79699
8 NR female 4 zima NA -0.41397
9 NR male 1 lato 0.233164752 -0.11484
9 NR male 2 lato NA -1.26982
9 NR male 3 zima 0.258378951 0.35827
9 NR male 4 zima NA -1.32658
10 R male 1 lato 0.233973797 -0.24418
10 R male 2 lato NA -0.37234
10 R male 3 zima 0.283488877 1.05007
10 R male 4 zima NA -1.62183
11 NR male 1 lato 0.247344964 -1.27324
&#13;
答案 0 :(得分:0)
我处理了这个问题。也许它不是最优雅的方式,但我只是改变了VCV中列的名称,我在代码中使用了新名称。有用!