我有一个零数组
arr = np.zeros([5,5])
array([[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.]])
我想根据索引分配值,所以我这样做了。
out = np.array([[nan,2.,4.,1.,1.],[nan,3.,4.,4.,4.]])
arr[out[0].astype(int),np.arange(len(out[0]))] = 1
arr[out[1].astype(int),np.arange(len(out[1]))] = 1
如果有0而不是nan,则赋值可以正常工作。
如果是nan,我如何跳过作业?是否可以从多维索引数组中一次分配值而不是使用for循环?
答案 0 :(得分:1)
掩盖它 -
mask = ~np.isnan(out)
arr[out[0,mask[0]].astype(int),np.flatnonzero(mask[0])] = 1
arr[out[1,mask[1]].astype(int),np.flatnonzero(mask[1])] = 1
示例运行 -
In [171]: out
Out[171]:
array([[ nan, 2., 4., 1., 1.],
[ nan, 3., 4., 4., 4.]])
In [172]: mask = ~np.isnan(out)
...: arr[out[0,mask[0]].astype(int),np.flatnonzero(mask[0])] = 1
...: arr[out[1,mask[1]].astype(int),np.flatnonzero(mask[1])] = 1
...:
In [173]: arr
Out[173]:
array([[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 1., 1.],
[ 0., 1., 0., 0., 0.],
[ 0., 1., 0., 0., 0.],
[ 0., 0., 1., 1., 1.]])
替代方案,将flatnonzero
调用替换为范围屏蔽 -
r = np.arange(arr.shape[1])
arr[out[0,mask[0]].astype(int),r[mask[0]]] = 1
arr[out[1,mask[1]].astype(int),r[mask[1]]] = 1
如果您正在处理的行数不仅仅是2
而且您希望以矢量化方式分配它们,请使用linear-indexing
-
n = arr.shape[1]
linear_idx = (out*n + np.arange(n))
np.put(arr, linear_idx[~np.isnan(linear_idx)].astype(int), 1)