我有这个基本功能'follow_up'(比我的真功能简单......),它从线性回归中提取一些信息。这两个参数是个体(n)的数量和个体(rp)的重复次数。
Project name: native
NDK is missing a "platforms" directory.
If you are using NDK, verify the ndk.dir is set to a valid NDK directory. It is currently set to C:\android-sdks\ndk-bundle.
If you are not using NDK, unset the NDK variable from ANDROID_NDK_HOME or local.properties to remove this warning.
Found properties file: C:\Users\it056548\.signing\HelloWorldApp.properties!
Adding new signingConfig helloWorldApp_release
Available signingConfigs:
------------------
debug
------------------
helloWorldApp_release
------------------
releaseConfig
------------------
Available buildTypes:
------------------
debug
------------------
release
------------------
SigningConfig assigned to the release buildType BEFORE overriding: releaseConfig
SigningConfig assigned to the release buildType AFTER overriding: helloWorldApp_release
:clean
:preBuild UP-TO-DATE
:preReleaseBuild UP-TO-DATE
:checkReleaseManifest
:prepareReleaseDependencies
:compileReleaseAidl
:compileReleaseRenderscript
:generateReleaseBuildConfig
:generateReleaseResValues
:generateReleaseResources
:mergeReleaseResources
:processReleaseManifest
:processReleaseResources
:generateReleaseSources
:incrementalReleaseJavaCompilationSafeguard
:javaPreCompileRelease
:compileReleaseJavaWithJavac
:compileReleaseJavaWithJavac - is not incremental (e.g. outputs have changed, no previous execution, etc.).
:compileReleaseNdk NO-SOURCE
:compileReleaseSources
:lintVitalRelease
:mergeReleaseShaders
:compileReleaseShaders
:generateReleaseAssets
:mergeReleaseAssets
:transformClassesWithDexForRelease
:mergeReleaseJniLibFolders
:transformNativeLibsWithMergeJniLibsForRelease
:processReleaseJavaRes NO-SOURCE
:transformResourcesWithMergeJavaResForRelease
:validateSigningRelease
:packageRelease
:assembleRelease
BUILD SUCCESSFUL
Total time: 8.692 secs
我想实现大模拟,并获得以下内容:
对于n和rp的每个组合(两者都位于expand.grid提供的两个第一列中),我想实现大约1,000次迭代,为每次迭代计算'follow_up'函数,并放入数据框的其他列是'follow_up'返回的三个组件的平均值(即R2和coeffs的平均值)。
因为我的实际函数更复杂,并且因为n和rp具有更高的维度,所以我想优化我的代码(例如,如果可能的话,避免使用rbind或loop)。谢谢你的帮助。
答案 0 :(得分:1)
你可以:
set.seed(1)
follow_up_vectorized <- Vectorize(follow_up)
sims <- replicate(1e3, follow_up_vectorized(p$n, p$rp))
res <- apply(sims, c(1, 2), mean)
# [,1] [,2] [,3] [,4] [,5] [,6]
# [1,] 4.00783364 3.991355959 4.011558264 3.983996744 3.99937381 4.009033518
# [2,] -0.03425608 -0.004379941 0.005743333 0.005036114 -0.01332833 -0.007702833
但我不会称之为&#34;优化&#34;在不知道实际代码的性能瓶颈的情况下。
修改强>
根据CPak的请求,输出为新列:
cbind(p, t(res))
# n rp 1 2
# 1 5 2 4.007834 -0.034256082
# 2 10 2 3.991356 -0.004379941
# 3 5 4 4.011558 0.005743333
# 4 10 4 3.983997 0.005036114
# 5 5 6 3.999374 -0.013328326
# 6 10 6 4.009034 -0.007702833
答案 1 :(得分:1)
n=c(5,10)
rp=c(2,4,6)
p=expand.grid(n=n,rp=rp)
follow_up_df <- function(n=10,rp=5){
donnees <- data.frame(Id=rep(1:n, rep(rp,n)),X=rnorm(n*rp),Y=rnorm(n*rp,4,2))
sfit <- summary(lm(Y~X, donnees))
output <- c(sfit$R.chisq, sfit$coeff[1], sfit$coeff[2])
df <- data.frame(X1=output[1], X2=output[2])
return(df)
}
CP <- function() {
require(tidyverse)
totiter <- 1000
# Copy p 1000 times
p1 = p[rep(seq_len(nrow(p)), totiter ), ] %>%
mutate(ID = seq_len(totiter*nrow(p))) # unique ID to join
# Calculate mean of N iterations
ans <- map_df(1:nrow(p1), ~follow_up(p1$n[.x], p1$rp[.x])) %>% # follow_up rowwise
mutate(ID = seq_len(totiter*nrow(p))) %>% # unique ID to join
left_join(., p1, by="ID") %>% # join with p1
group_by(n, rp) %>%
summarise(X1 = mean(X1), X2 = mean(X2)) %>% # mean per n,rp pair
ungroup()
}
set.seed(1)
n rp X1 X2
1 5 2 4.007834 -0.034256082
2 5 4 4.011558 0.005743333
3 5 6 3.999374 -0.013328326
4 10 2 3.991356 -0.004379941
5 10 4 3.983997 0.005036114
6 10 6 4.009034 -0.007702833
Aurele <- function() {
set.seed(1)
follow_up_vectorized <- Vectorize(follow_up)
sims <- replicate(1e3, follow_up_vectorized(p$n, p$rp))
res <- apply(sims, c(1, 2), mean)
}
library(microbenchmark)
microbenchmark(CP(), times=5L)
expr min lq mean median uq max neval
CP() 25.02497 25.58269 25.83376 25.92396 26.26672 26.37044 5
Aurele() 21.31826 21.44110 21.73005 21.79842 21.85301 22.23944 5
Aurele's solution is faster!