我想在不使用expand.grid的情况下重塑一个tibble。虽然expand.grid +删除缺少的obs + delete“翻转重复”(即a,b与b相同,a)应该有效,但如果我有很多组合,计算速度会很慢。
这是我想要实现的虚拟版本:
library(dplyr)
library(tidyr)
initial_data <- tibble(x = c("east","east","east"), y = c("a","b","c"), z = c(0.1,0.2,0.3))
> initial_data
# A tibble: 3 x 3
x y z
<chr> <chr> <dbl>
1 east a 0.1
2 east b 0.2
3 east c 0.3
final_data <- tibble(x = c("east","east","east"), y1 = c("a","a","b"), y2 = c("b","c","c"), z1 = c(0.1,0.1,0.2), z2 = c(0.2,0.3,0.3))
> final_data
# A tibble: 3 x 5
x y1 y2 z1 z2
<chr> <chr> <chr> <dbl> <dbl>
1 east a b 0.1 0.2
2 east a c 0.1 0.3
3 east b c 0.2 0.3
这样可行,但效率极低:
expand_data <- as_tibble(expand.grid(initial_data$x, initial_data$y, initial_data$y)) %>%
filter(Var2 != Var3) %>%
distinct()
index <- !duplicated(t(apply(expand_data, 1, sort)))
expand_data <- expand_data[index, ] %>%
left_join(initial_data, by = c("Var1" = "x", "Var2" = "y")) %>%
left_join(initial_data, by = c("Var1" = "x", "Var3" = "y"))
> expand_data
# A tibble: 3 x 5
Var1 Var2 Var3 z.x z.y
<chr> <chr> <chr> <dbl> <dbl>
1 east b a 0.2 0.1
2 east c a 0.3 0.1
3 east c b 0.3 0.2
非常感谢提前!!
答案 0 :(得分:1)
如果要inner join
然后过滤唯一组合呢?
library(dplyr)
inner_join(initial_data, initial_data,
suffix = c('1', '2'), by = 'x') %>%
filter(y1 < y2) %>%
select(x, y1, y2, z1, z2)
# x y1 y2 z1 z2
# 1 east a b 0.1 0.2
# 2 east a c 0.1 0.3
# 3 east b c 0.2 0.3
答案 1 :(得分:1)
此基础R解决方案是否适合您?:
data.frame(x = rep("east", 3),
matrix(rep(initial_data$y, each = 2), 3),
matrix(rep(initial_data$z, each = 2), 3))
# x X1 X2 X1.1 X2.1
# 1 east a b 0.1 0.2
# 2 east a c 0.1 0.3
# 3 east b c 0.2 0.3
答案 2 :(得分:1)
我会尝试combn
,并结合purrr::map
您的数据
initial_data <- tibble(x = c("east","east","east"), y = c("a","b","c"), z = c(0.1,0.2,0.3))
解决方案
initial_data %>%
nest(-x) %>%
mutate(data = map(data, ~cbind(as_tibble(t(combn(.x$y, 2))) %>% setNames(paste0("y", 1:2)),
as_tibble(t(combn(initial_data$z, 2))) %>% setNames(paste0("z", 1:2))) )) %>%
unnest(data)
输出
# A tibble: 3 x 5
# x y1 y2 z1 z2
# <chr> <chr> <chr> <dbl> <dbl>
# 1 east a b 0.1 0.2
# 2 east a c 0.1 0.3
# 3 east b c 0.2 0.3