从previous answer我发现了一个意想不到的结果。当应用于相同的数组时,使用np.all()
和np.array_equal()
应该(?)给出相同的结果:
numpy.array_equal:
如果两个数组具有相同的形状和元素,则为true,否则为False。
numpy.all:
测试沿给定轴的所有数组元素是否都计算为True。
我发现np.array_equal()
正确检测到并非所有浮点数都相等,而np.all()
则没有:
a = [2.4087544003885513, 2.3879935199483318, 2.386294670523619, 2.384707877126921, 2.383121083730223, 2.3815342903335246, 2.379947496936826, 2.3783607035401277, 2.3767739101434295, 2.3751871167467313, 2.373600323350033, 2.4078999731749446, 2.287084065220971, 2.4070455459613376, 0.41527165901786656, 2.406191118747731, 1.9094182323045095, 2.4053366915341243, 2.4044822643205173, 2.2784177320543866, 2.4036278371069106, 0.41429517077374456, 2.4031455959863504, 2.4027794128948043, 2.4024132298032588, 2.402047046711713, 2.269751398887804, 1.91454479558615, 2.401680863620167, 0.41331868252962234, 2.4013146805286216, 2.400948497437076, 2.40058231434553, 2.3993817140453797, 0.4123421942855004, 2.2610850657212214, 2.397550798587651, 1.9196713588677916, 2.395719883129922, 0.41136570604137845, 2.393888967672193, 2.2524187325546365, 2.3920580522144643, 2.390227136756735, 0.41038921779725646, 2.243752399388054, 2.3883962212990064, 1.9247979221494322, 2.3865653058412772, 0.4094157310538846, 2.384780413395054, 2.235415230803762, 2.3830715589678406, 0.40868336487079304, 2.3813627045406274, 1.9299244854310729, 2.3796538501134132, 0.40795099868770135, 2.2276033248507843, 2.3779449956862, 0.40721863250460955, 2.3762361412589867, 2.374527286831773, 1.9354887675721426, 0.40648626632151796, 2.2197914188978083, 2.3728184324045594, 2.370974510443579, 0.40575390013842627, 2.368533289833274, 2.2119795129448323, 0.40502153395533447, 2.3660920692229683, 1.9414697580673912, 2.3636508486126635, 0.4042891677722429, 2.2041676069918545, 2.3612096280023582, 0.4035568015891512, 2.358768407392053, 1.947450748562638, 2.3563271867817477, 0.4029244854310722, 2.1963557010388786, 2.353885966171443, 0.4023141802784961, 2.351444745561137, 2.1885437950859026, 1.9534317390578853, 0.40170387512592, 2.348640343360037, 2.345832939658186, 0.40109356997334367, 2.180731889132926, 2.343025535956335, 0.40048326482076757, 1.9594127295531334, 2.340218132254484, 2.337410728552633, 0.3998729596681915, 2.1731786124946058, 2.334603324850782, 0.3992626545156152, 2.3317959211489314, 1.9653937200483806, 2.1667093778772974, 0.3986523493630391, 2.3289885174470806, 2.3279369916841994, 2.327326686531623, 2.326716381379047, 2.3261060762264707, 2.325495771073894, 2.324885465921318, 2.160240143259989, 0.3978889676721937, 2.324275160768742, 2.3236648556161654, 2.3215738100934034, 1.971374710543628, 0.3970345404585867, 2.318522284330522, 2.1537709086426795, 2.31547075856764, 0.39618011324497987, 2.3124192328047593, 2.309367707041878, 1.977355701038876, 2.147301674025371, 2.306316181278996, 0.3953256860313731, 2.303264655516115, 2.3002131297532338, 0.394471258817766, 2.1408324394080633, 2.297010028202458, 1.9831415939853487, 2.293592319348031, 0.3936168316041592, 2.2901746104936036, 2.1343632047907537, 2.2867569016391758, 0.39276240439055243, 2.283339192784749, 1.9885122793280199, 2.279921483930322, 0.3919079771769456, 2.1278939701734454, 2.276503775075894, 2.2730860662214667, 0.391159602989852, 2.2701816139953546, 2.269083064720717, 1.993882964670692, 2.1214247355561358, 2.26798451544608, 2.2668859661714427, 0.3905492978372759, 2.2657874168968055, 2.264688867622168, 2.2635903183475308, 2.2624917690728936, 2.261295170773743, 0.3899389926846998, 2.2567789126446787, 1.999253650013363, 2.2522626545156146, 0.38932868753212346, 2.247746396386549, 0.38871838237954737, 2.243230138257485, 2.004624335356034, 2.238713880128421, 0.38810807722697127, 2.2341976219993556, 0.38749777207439506, 2.0099950206987063, 2.2296813638702915, 2.225165105741227, 0.3868874669218189, 2.2202406435101105, 0.38627716176924276, 2.015365706041377, 2.2152361412589854, 2.2102316390078602, 0.3856668566166662, 2.205227136756734, 2.020736391384048, 0.3850565514640899, 2.200222634505609, 2.195218132254484, 0.3844462463115136, 2.190213630003358, 2.025672859618166, 2.1852091277522327, 0.38383594115893704, 2.02762583610641, 2.1800475469618377, 2.029578812594654, 0.3832256360063607, 2.1747989226496807, 2.0315317890828983, 2.169550298337525, 2.0334847655711425, 0.3826153308537844, 2.164301674025369, 2.0354377420593868, 2.159053049713213, 2.037390718547631, 0.38200502570120787, 2.153804425401056, 2.039343695035875, 2.1485558010889, 2.041296671524119, 0.3813887175471308, 2.046443244810761, 2.1433071767767444, 2.0518139301534335, 2.1373982222995047, 2.057184615496104, 2.130684865621166, 2.0625553008387754, 2.1239715089428275, 0.3806563513640394, 2.1172581522644873, 2.0679259861814474, 2.110544795586149, 2.0732966715241186, 2.1038314389078105, 2.0971180822294704, 2.0786673568667897, 2.090404725551132, 2.0840380422094618, 0.37992398518094783, 0.3791916189978564, 0.378459252814765, 0.37772688663167364, 0.37699452044858206, 0.37626215426549064, 0.37552978808239923, 0.3749019741754456, 0.37429166902286926, 0.3736813638702929, 0.3730710587177164, 0.3724607535651401, 0.3718504484125637, 0.3712401432599872, 0.3706298381074109, 0.3700195329548346, 0.36940922780225827, 0.368798922649682, 0.36818861749710574, 0.36757831234452937, 0.3669680071919531, 0.3663577020393769, 0.3657473968868005, 0.3651946204986065, 0.36470637637654557, 0.3642181322544846, 0.36372988813242363, 0.3632416440103627, 0.3627533998883018, 0.36226515576624074, 0.3617769116441798, 0.36125465051361455, 0.36064434536103807, 0.36003404020846175, 0.3594237350558854, 0.3588134299033089, 0.3582031247507325, 0.35759281959815614, 0.3569825144455797, 0.35636170404037704, 0.3556293378572856, 0.3548969716741941, 0.3541646054911026, 0.3594247355561361, 0.3594247355561361, 0.3588094279023093, 0.3594247355561361, 0.35343223930801126, 0.3594247355561361, 0.3580770617192177, 0.3594247355561361, 0.357344695536126, 0.3594247355561361, 0.3594247355561361, 0.3566123293530345, 0.3594247355561361, 0.3594247355561361, 0.35587996316994297, 0.3526998731249197, 0.3551475969868513, 0.3593066765266212, 0.35441523080375975, 0.3536828646206682, 0.35918461549610575, 0.3519675069418283, 0.3531085774770963, 0.35262033335503523, 0.3590625544655903, 0.35123514075873685, 0.35213208923297423, 0.35894049343507495, 0.35164384511091307, 0.3588184324045596, 0.351155600988852, 0.3505027745756453, 0.35066735686679096, 0.3586963713740441, 0.3500975719743447, 0.3501791127447298, 0.3585743103435287, 0.34969086862266874, 0.34973138888279887, 0.35845224931301334, 0.3492026245006077, 0.3493652057912531, 0.3487143803785465, 0.34822613625648546, 0.3583301882824981, 0.3489990226997072, 0.3477378921344244, 0.34724964801236324, 0.3486328396081614, 0.35820812725198287, 0.3467614038903022, 0.34627315976824113, 0.34826665651661554, 0.35808606622146766, 0.3457849156461801, 0.345296671524119, 0.34790047342506963, 0.3448084274020581, 0.34432018327999725, 0.3579640051909525, 0.34383193915793625, 0.3475342903335238, 0.34334369503587536, 0.3428554509138145, 0.3423672067917535, 0.3471681072419781, 0.34187896266969264, 0.3578419441604373, 0.3468019241504323, 0.34140772705188377, 0.3411636049908532, 0.34091948292982266, 0.34643574105888664, 0.34067536086879213, 0.34043123880776155, 0.3460695579673409, 0.340187116746731, 0.3577198831299221, 0.3399429946857005, 0.3396988726246699, 0.3457033748757951, 0.3394547505636394, 0.33953178908289894, 0.3453371917842494, 0.3396538501134141, 0.3397759111439293, 0.3398979721744445, 0.3449710086927037, 0.34002003320495966, 0.35759782209940694, 0.34014209423547487, 0.3402641552659901, 0.3446048256011579, 0.34038621629650523, 0.3407589026396768, 0.34124714676173784, 0.3417353908837989, 0.34222363500586006, 0.3427118791279211, 0.34320012324998217, 0.34368836737204334, 0.3441766114941044, 0.35747576106889173, 0.3572116290028587]
b = [2.4087544003885513, 2.3879935199483318, 2.373600323350033, 2.3751871167467313, 2.3767739101434295, 2.379947496936826, 2.386294670523619, 2.383121083730223, 2.384707877126921, 2.3815342903335246, 2.3783607035401277, 2.4078999731749446, 2.287084065220971, 2.4070455459613376, 0.41527165901786656, 2.406191118747731, 1.9094182323045095, 2.4053366915341243, 2.4044822643205173, 2.2784177320543866, 2.4036278371069106, 0.41429517077374456, 2.4031455959863504, 2.4027794128948043, 2.4024132298032588, 2.402047046711713, 2.269751398887804, 1.91454479558615, 2.401680863620167, 0.41331868252962234, 2.4013146805286216, 2.400948497437076, 2.40058231434553, 2.3993817140453797, 0.4123421942855004, 2.2610850657212214, 2.397550798587651, 1.9196713588677916, 2.395719883129922, 0.41136570604137845, 2.393888967672193, 2.2524187325546365, 2.3920580522144643, 2.390227136756735, 0.41038921779725646, 2.243752399388054, 2.3883962212990064, 1.9247979221494322, 2.3865653058412772, 0.4094157310538846, 2.384780413395054, 2.235415230803762, 2.3830715589678406, 0.40868336487079304, 2.3813627045406274, 1.9299244854310729, 2.3796538501134132, 0.40795099868770135, 2.2276033248507843, 2.3779449956862, 0.40721863250460955, 2.3762361412589867, 2.374527286831773, 1.9354887675721426, 0.40648626632151796, 2.2197914188978083, 2.3728184324045594, 2.370974510443579, 0.40575390013842627, 2.368533289833274, 2.2119795129448323, 0.40502153395533447, 2.3660920692229683, 1.9414697580673912, 2.3636508486126635, 0.4042891677722429, 2.2041676069918545, 2.3612096280023582, 0.4035568015891512, 2.358768407392053, 1.947450748562638, 2.3563271867817477, 0.4029244854310722, 2.1963557010388786, 2.353885966171443, 0.4023141802784961, 2.351444745561137, 2.1885437950859026, 1.9534317390578853, 0.40170387512592, 2.348640343360037, 2.345832939658186, 0.40109356997334367, 2.180731889132926, 2.343025535956335, 0.40048326482076757, 1.9594127295531334, 2.340218132254484, 2.337410728552633, 0.3998729596681915, 2.1731786124946058, 2.334603324850782, 0.3992626545156152, 2.3317959211489314, 1.9653937200483806, 2.1667093778772974, 0.3986523493630391, 2.3289885174470806, 2.3279369916841994, 2.327326686531623, 2.326716381379047, 2.3261060762264707, 2.325495771073894, 2.324885465921318, 2.160240143259989, 0.3978889676721937, 2.324275160768742, 2.3236648556161654, 2.3215738100934034, 1.971374710543628, 0.3970345404585867, 2.318522284330522, 2.1537709086426795, 2.31547075856764, 0.39618011324497987, 2.3124192328047593, 2.309367707041878, 1.977355701038876, 2.147301674025371, 2.306316181278996, 0.3953256860313731, 2.303264655516115, 2.3002131297532338, 0.394471258817766, 2.1408324394080633, 2.297010028202458, 1.9831415939853487, 2.293592319348031, 0.3936168316041592, 2.2901746104936036, 2.1343632047907537, 2.2867569016391758, 0.39276240439055243, 2.283339192784749, 1.9885122793280199, 2.279921483930322, 0.3919079771769456, 2.1278939701734454, 2.276503775075894, 2.2730860662214667, 0.391159602989852, 2.2701816139953546, 2.269083064720717, 1.993882964670692, 2.1214247355561358, 2.26798451544608, 2.2668859661714427, 0.3905492978372759, 2.2657874168968055, 2.264688867622168, 2.2635903183475308, 2.2624917690728936, 2.261295170773743, 0.3899389926846998, 2.2567789126446787, 1.999253650013363, 2.2522626545156146, 0.38932868753212346, 2.247746396386549, 0.38871838237954737, 2.243230138257485, 2.004624335356034, 2.238713880128421, 0.38810807722697127, 2.2341976219993556, 0.38749777207439506, 2.0099950206987063, 2.2296813638702915, 2.225165105741227, 0.3868874669218189, 2.2202406435101105, 0.38627716176924276, 2.015365706041377, 2.2152361412589854, 2.2102316390078602, 0.3856668566166662, 2.205227136756734, 2.020736391384048, 0.3850565514640899, 2.200222634505609, 2.195218132254484, 0.3844462463115136, 2.190213630003358, 2.025672859618166, 2.1852091277522327, 0.38383594115893704, 2.02762583610641, 2.1800475469618377, 2.029578812594654, 0.3832256360063607, 2.1747989226496807, 2.0315317890828983, 2.169550298337525, 2.0334847655711425, 0.3826153308537844, 2.164301674025369, 2.0354377420593868, 2.159053049713213, 2.037390718547631, 0.38200502570120787, 2.153804425401056, 2.039343695035875, 2.1485558010889, 2.041296671524119, 0.3813887175471308, 2.046443244810761, 2.1433071767767444, 2.0518139301534335, 2.1373982222995047, 2.057184615496104, 2.130684865621166, 2.0625553008387754, 2.1239715089428275, 0.3806563513640394, 2.1172581522644873, 2.0679259861814474, 2.110544795586149, 2.0732966715241186, 2.1038314389078105, 2.0971180822294704, 2.0786673568667897, 2.090404725551132, 2.0840380422094618, 0.37992398518094783, 0.3791916189978564, 0.378459252814765, 0.37772688663167364, 0.37699452044858206, 0.37626215426549064, 0.37552978808239923, 0.3749019741754456, 0.37429166902286926, 0.3736813638702929, 0.3730710587177164, 0.3724607535651401, 0.3718504484125637, 0.3712401432599872, 0.3706298381074109, 0.3700195329548346, 0.36940922780225827, 0.368798922649682, 0.36818861749710574, 0.36757831234452937, 0.3669680071919531, 0.3663577020393769, 0.3657473968868005, 0.3651946204986065, 0.36470637637654557, 0.3642181322544846, 0.36372988813242363, 0.3632416440103627, 0.3627533998883018, 0.36226515576624074, 0.3617769116441798, 0.36125465051361455, 0.36064434536103807, 0.36003404020846175, 0.3594237350558854, 0.3588134299033089, 0.3582031247507325, 0.35759281959815614, 0.3569825144455797, 0.35636170404037704, 0.3556293378572856, 0.3548969716741941, 0.3541646054911026, 0.3594247355561361, 0.3594247355561361, 0.3588094279023093, 0.3594247355561361, 0.35343223930801126, 0.3594247355561361, 0.3580770617192177, 0.3594247355561361, 0.357344695536126, 0.3594247355561361, 0.3594247355561361, 0.3566123293530345, 0.3594247355561361, 0.3594247355561361, 0.35587996316994297, 0.3526998731249197, 0.3551475969868513, 0.3593066765266212, 0.35441523080375975, 0.3536828646206682, 0.35918461549610575, 0.3519675069418283, 0.3531085774770963, 0.35262033335503523, 0.3590625544655903, 0.35123514075873685, 0.35213208923297423, 0.35894049343507495, 0.35164384511091307, 0.3588184324045596, 0.351155600988852, 0.3505027745756453, 0.35066735686679096, 0.3586963713740441, 0.3500975719743447, 0.3501791127447298, 0.3585743103435287, 0.34969086862266874, 0.34973138888279887, 0.35845224931301334, 0.3492026245006077, 0.3493652057912531, 0.3487143803785465, 0.34822613625648546, 0.3583301882824981, 0.3489990226997072, 0.3477378921344244, 0.34724964801236324, 0.3486328396081614, 0.35820812725198287, 0.3467614038903022, 0.34627315976824113, 0.34826665651661554, 0.35808606622146766, 0.3457849156461801, 0.345296671524119, 0.34790047342506963, 0.3448084274020581, 0.34432018327999725, 0.3579640051909525, 0.34383193915793625, 0.3475342903335238, 0.34334369503587536, 0.3428554509138145, 0.3423672067917535, 0.3471681072419781, 0.34187896266969264, 0.3578419441604373, 0.3468019241504323, 0.34140772705188377, 0.3411636049908532, 0.34091948292982266, 0.34643574105888664, 0.34067536086879213, 0.34043123880776155, 0.3460695579673409, 0.340187116746731, 0.3577198831299221, 0.3399429946857005, 0.3396988726246699, 0.3457033748757951, 0.3394547505636394, 0.33953178908289894, 0.3453371917842494, 0.3396538501134141, 0.3397759111439293, 0.3398979721744445, 0.3449710086927037, 0.34002003320495966, 0.35759782209940694, 0.34014209423547487, 0.3402641552659901, 0.3446048256011579, 0.34038621629650523, 0.3417353908837989, 0.3441766114941044, 0.34368836737204334, 0.34320012324998217, 0.3427118791279211, 0.34222363500586006, 0.3407589026396768, 0.34124714676173784, 0.35747576106889173, 0.3572116290028587]
a, b = np.array(a), np.array(b)
print(np.array_equal(a, b), np.all([a, b]))
for ae, be in zip(*[a, b]):
if ae != be:
print(ae, be, ae - be)
结果:
(False, True)
(2.3862946705236192, 2.3736003233500331, 0.012694347173586085)
(2.384707877126921, 2.3751871167467313, 0.0095207603801896745)
(2.3831210837302228, 2.3767739101434295, 0.0063471735867932644)
(2.3815342903335246, 2.3799474969368259, 0.0015867933966986492)
(2.3799474969368259, 2.3862946705236192, -0.0063471735867932644)
(2.3783607035401277, 2.3831210837302228, -0.0047603801900950593)
(2.3767739101434295, 2.384707877126921, -0.0079339669834914694)
(2.3751871167467313, 2.3815342903335246, -0.0063471735867932644)
(2.3736003233500331, 2.3783607035401277, -0.0047603801900946152)
(0.34075890263967679, 0.3417353908837989, -0.00097648824412210899)
(0.34124714676173784, 0.34417661149410439, -0.002929464732366549)
(0.3417353908837989, 0.34368836737204334, -0.00195297648824444)
(0.34222363500586006, 0.34320012324998217, -0.00097648824412210899)
(0.34320012324998217, 0.34222363500586006, 0.00097648824412210899)
(0.34368836737204334, 0.34075890263967679, 0.002929464732366549)
(0.34417661149410439, 0.34124714676173784, 0.002929464732366549)
np.all()
是否存在我不知道的容差,文档中没有提及?
Python 2.7.13,numpy
v1.13.1
答案 0 :(得分:3)
使用np.array_equal
的{{1}}最接近的实施方式是:
np.all
(以下@MSeifert注明的例外情况)
但是,两者都有浮点输入的危险。最好使用np.allclose
:
np.all(a == b)