今天上午花了一段时间寻找一个广义问题来指出有关as_strided
和/或how to make generalized window functions的问题的重复问题。关于如何(安全地)创建补丁,滑动窗口,滚动窗口,平铺或视图到阵列以进行机器学习,卷积,图像处理和/或数值积分,似乎有很多questions。
我正在寻找一个可以接受window
,step
和axis
参数的广义函数,并为任意维度返回as_strided
视图。我将在下面给出我的答案,但我很感兴趣,如果有人能够制作更有效的方法,因为我不确定使用np.squeeze()
是最好的方法,我不确定我的assert
语句使函数足够安全以写入结果视图,我不知道如何处理axis
不按升序排列的边缘情况。
DUE DILIGENCE
我能找到的最普遍的函数是@eickenberg编写的sklearn.feature_extraction.image.extract_patches
(以及明显等价的skimage.util.view_as_windows
),但是那些在网上没有很好地记录,并且不能做窗口轴数少于原始数组中的轴数(例如,this question仅在一个轴上请求一定大小的窗口)。通常,问题只需要numpy
个答案。
@Divakar为1-d输入here创建了一个通用numpy
函数,但更高维度的输入需要更多关注。我做了一个简单的骨头2D window over 3d input method,但它不是很容易扩展。
答案 0 :(得分:5)
这是我到目前为止的食谱:
def window_nd(a, window, steps = None, axis = None, outlist = False):
"""
Create a windowed view over `n`-dimensional input that uses an
`m`-dimensional window, with `m <= n`
Parameters
-------------
a : Array-like
The array to create the view on
window : tuple or int
If int, the size of the window in `axis`, or in all dimensions if
`axis == None`
If tuple, the shape of the desired window. `window.size` must be:
equal to `len(axis)` if `axis != None`, else
equal to `len(a.shape)`, or
1
steps : tuple, int or None
The offset between consecutive windows in desired dimension
If None, offset is one in all dimensions
If int, the offset for all windows over `axis`
If tuple, the steps along each `axis`.
`len(steps)` must me equal to `len(axis)`
axis : tuple, int or None
The axes over which to apply the window
If None, apply over all dimensions
if tuple or int, the dimensions over which to apply the window
outlist : boolean
If output should be as list of windows.
If False, it will be an array with
`a.nidim + 1 <= a_view.ndim <= a.ndim *2`.
If True, output is a list of arrays with `a_view[0].ndim = a.ndim`
Warning: this is a memory-intensive copy and not a view
Returns
-------
a_view : ndarray
A windowed view on the input array `a`, or copied list of windows
"""
ashp = np.array(a.shape)
if axis != None:
axs = np.array(axis, ndmin = 1)
assert np.all(np.in1d(axs, np.arange(ashp.size))), "Axes out of range"
else:
axs = np.arange(ashp.size)
window = np.array(window, ndmin = 1)
assert (window.size == axs.size) | (window.size == 1), "Window dims and axes don't match"
wshp = ashp.copy()
wshp[axs] = window
assert np.all(wshp <= ashp), "Window is bigger than input array in axes"
stp = np.ones_like(ashp)
if steps:
steps = np.array(steps, ndmin = 1)
assert np.all(steps > 0), "Only positive steps allowed"
assert (steps.size == axs.size) | (steps.size == 1), "Steps and axes don't match"
stp[axs] = steps
astr = np.array(a.strides)
shape = tuple((ashp - wshp) // stp + 1) + tuple(wshp)
strides = tuple(astr * stp) + tuple(astr)
as_strided = np.lib.stride_tricks.as_strided
a_view = np.squeeze(as_strided(a,
shape = shape,
strides = strides))
if outlist:
return list(a_view.reshape((-1,) + tuple(wshp)))
else:
return a_view
一些测试用例:
a = np.arange(1000).reshape(10,10,10)
window_nd(a, 4).shape # sliding (4x4x4) window
Out: (7, 7, 7, 4, 4, 4)
window_nd(a, 2, 2).shape # (2x2x2) blocks
Out: (5, 5, 5, 2, 2, 2)
window_nd(a, 2, 1, 0).shape # sliding window of width 2 over axis 0
Out: (9, 2, 10, 10)
window_nd(a, 2, 2, (0,1)).shape # tiled (2x2) windows over first and second axes
Out: (5, 5, 2, 2, 10)
window_nd(a,(4,3,2)).shape # arbitrary sliding window
Out: (7, 8, 9, 4, 3, 2)
window_nd(a,(4,3,2),(1,5,2),(0,2,1)).shape #arbitrary windows, steps and axis
Out: (7, 5, 2, 4, 2, 3) # note shape[-3:] != window as axes are out of order