如何使用DataFrame
abstraction
专门计算每组的累计总和;并在PySpark
?
使用如下示例数据集:
df = sqlContext.createDataFrame( [(1,2,"a"),(3,2,"a"),(1,3,"b"),(2,2,"a"),(2,3,"b")],
["time", "value", "class"] )
+----+-----+-----+
|time|value|class|
+----+-----+-----+
| 1| 2| a|
| 3| 2| a|
| 1| 3| b|
| 2| 2| a|
| 2| 3| b|
+----+-----+-----+
我想在(有序)value
变量上为每个class
分组添加time
的累积和列。
答案 0 :(得分:37)
这可以使用窗口函数和窗口范围内的Window.unboundedPreceding值的组合来完成,如下所示:
from pyspark.sql import Window
from pyspark.sql import functions as F
windowval = (Window.partitionBy('class').orderBy('time')
.rangeBetween(Window.unboundedPreceding, 0))
df_w_cumsum = df.withColumn('cum_sum', F.sum('value').over(windowval))
df_w_cumsum.show()
+----+-----+-----+-------+
|time|value|class|cum_sum|
+----+-----+-----+-------+
| 1| 3| b| 3|
| 2| 3| b| 6|
| 1| 2| a| 2|
| 2| 2| a| 4|
| 3| 2| a| 6|
+----+-----+-----+-------+
答案 1 :(得分:1)
我已经尝试过这种方法,并且对我有用。
from pyspark.sql import Window
from pyspark.sql import functions as f
import sys
cum_sum = DF.withColumn('cumsum', f.sum('value').over(Window.partitionBy('class').orderBy('time').rowsBetween(-sys.maxsize, 0)))
cum_sum.show()