我正在使用这个tensorflow代码来制作一个pos标签:
import tensorflow as tf
import pickle
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
RANDOM_SEED = 42
tf.set_random_seed(RANDOM_SEED)
Data = myData
Target = myTarget
def init_weights(shape):
""" Weight initialization """
weights = tf.random_uniform(shape, minval=0.5, maxval=-0.5)
return tf.Variable(weights)
def forwardprop(X, w_1, w_2):
"""
Forward-propagation.
IMPORTANT: yhat is not softmax since TensorFlow's softmax_cross_entropy_with_logits() does that internally.
"""
h = tf.nn.tanh(tf.matmul(X, w_1)) # The \sigma function
yhat = tf.matmul(h, w_2) # The \varphi function
return yhat
def get_data():
data = np.array(Data)
target = np.array(Target)
# Prepend the column of 1s for bias
N, M = data.shape
all_X = np.ones((N, M + 1))
all_X[:, 1:] = data
all_Y=target
return train_test_split(all_X, all_Y, test_size=0.33, random_state=RANDOM_SEED)
def main():
train_X, test_X, train_y, test_y = get_data()
# Layer's sizes
x_size = train_X.shape[1] # Number of input nodes
h_size = 40 # Number of hidden nodes
y_size = train_y.shape[1] # Number of outcomes
# Symbols
X = tf.placeholder("float", shape=[None, x_size])
y = tf.placeholder("float", shape=[None, y_size])
# Weight initializations
w_1 = init_weights((x_size, h_size))
w_2 = init_weights((h_size, y_size))
# Forward propagation
yhat = forwardprop(X, w_1, w_2)
predict = tf.argmax(yhat, axis=1)
# Backward propagation
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=yhat))
updates = tf.train.GradientDescentOptimizer(0.1).minimize(cost)
# Run SGD
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
for epoch in range(100):
# Train with each example
for i in range(len(train_X)):
sess.run(updates, feed_dict={X: train_X[i: i + 1], y: train_y[i: i + 1]})
train_accuracy = np.mean(np.argmax(train_y, axis=1) ==
sess.run(predict, feed_dict={X: train_X, y: train_y}))
test_accuracy = np.mean(np.argmax(test_y, axis=1) ==
sess.run(predict, feed_dict={X: test_X, y: test_y}))
print("Epoch = %d, train accuracy = %.2f%%, test accuracy = %.2f%%"
% (epoch + 1, 100. * train_accuracy, 100. * test_accuracy))
sess.close()
if __name__ == '__main__':
main()
我必须将另一个值(标签转换概率)添加到网络的最后一层的输出,这是softmax函数产生的概率。但是,正如代码中提到的那样,'yhat'不是softmax,因为TensorFlow的softmax_cross_entropy_with_logits()在内部执行。现在,我不知道如何更改代码以便将标签转换概率添加到softmax函数的输出。