以这种方式使用Keras训练预训练模型:
baseModel = keras.applications.resnet50.ResNet50(include_top=False, weights='imagenet')
t = baseModel.output
t = MaxPooling2D()(t)
t = Dense(1000, activation='relu', kernel_regularizer=regularizers.l2(0.01))(t)
predictions = Dense(NUMCLASSES, activation='softmax')(t)
model = Model(inputs=baseModel.input, outputs=predictions)
for layer in baseModel.layers:
layer.trainable = False
model.compile(loss=losses.categorical_crossentropy, optimizer=keras.optimizers.Adam())
# loading the data
files = np.array(list(train_gt.keys()))
np.random.shuffle(files)
pics = [resize(io.imread(join(trainImgDir, f)), INPUTSHAPE, mode='reflect') for f in files]
pics = np.array(pics)
classes = np.array([train_gt[f] for f in files])
classes = to_categorical(classes, NUMCLASSES)
train = pics[: int(pics.shape[0] * ((SPLITDATA - 1) / SPLITDATA))]
classesTr = classes[: int(classes.shape[0] * ((SPLITDATA - 1) / SPLITDATA))]
# training
fIn = open("Error", 'w')
batchSize = 64
for ep in range(1000):
# train data
trLosses = np.array([], dtype='Float64')
for s in range(train.shape[0] // batchSize + (train.shape[0] % batchSize != 0)):
batch = train[s * batchSize : (s + 1) * batchSize]
batchClasses = classesTr[s * batchSize : (s + 1) * batchSize]
trLosses = np.append(trLosses, model.train_on_batch(batch, batchClasses))
我有一个错误:
File "/home/mark/miniconda3/lib/python3.6/site-packages/keras/engine/training.py", line 1636, in train_on_batch
check_batch_axis=True)
File "/home/mark/miniconda3/lib/python3.6/site-packages/keras/engine/training.py", line 1315, in _standardize_user_data
exception_prefix='target')
File "/home/mark/miniconda3/lib/python3.6/site-packages/keras/engine/training.py", line 127, in _standardize_input_data
str(array.shape))
ValueError: Error when checking target: expected dense_2 to have 4 dimensions, but got array with shape (64, 50)
我尝试过其他损失,但这并没有帮助。 batchClasses有形状(batchSize,NUMCLASSES)=(64,50),我希望在Dense的输出中有这个形状。
答案 0 :(得分:0)
MaxPooling2D()
不会删除宽度和高度尺寸,因此t = MaxPooling2D()(t)
的输出将是形状(batch_size, w, h, 2048)
的张量。这就是为什么以下Dense
图层会为您提供4D张量的原因。
此外,由于您没有向MaxPooling2D()
提供任何参数,并使用默认参数pool_size=(2, 2)
,因此w
和h
都可能较大比1。
所以你基本上有两个选择,取决于你认为哪个更适合你的问题:
在Flatten()
之后添加MaxPooling2D()
:
我不确定这是否是您想要的,因为如果w
和h
很大,展平会导致相当大的矢量。
删除t = MaxPooling2D()(t)
并使用:
ResNet50(..., pooling='max')
(推荐)或t = GlobalMaxPooling2D()(t)