我有一个包含许多字段的JSON文件。我在java中使用spark的数据集读取文件。
Spark版本2.2.0
java jdk 1.8.0_121
以下是代码。
SparkSession spark = SparkSession
.builder()
.appName("Java Spark SQL basic example")
.config("spark.some.config.option", "some-value")
.master("local")
.getOrCreate();
Dataset<Row> df = spark.read().json("jsonfile.json");
我想将withColumn函数与自定义UDF一起使用来添加新列。
UDF1 someudf = new UDF1<Row,String>(){
public String call(Row fin) throws Exception{
String some_str = fin.getAs("String");
return some_str;
}
};
spark.udf().register( "some_udf", someudf, DataTypes.StringType );
df.withColumn( "procs", callUDF( "some_udf", col("columnx") ) ).show();
运行上面的代码时出现转换错误。 java.lang.String无法强制转换为org.apache.spark.sql.Row
问题:
1 - 读取行数据集是唯一的选择吗?我可以将df转换为df的字符串。但我无法选择字段。
2 - 尝试但未能定义用户定义的数据类型。我无法使用此自定义UDDatatype注册UDF。我需要用户定义的数据类型吗?
3 - 主要问题是,如何从String转换为Row?
部分日志复制如下:
Caused by: java.lang.ClassCastException: java.lang.String cannot be cast to org.apache.spark.sql.Row
at Risks.readcsv$1.call(readcsv.java:1)
at org.apache.spark.sql.UDFRegistration$$anonfun$27.apply(UDFRegistration.scala:512)
... 16 more
Caused by: org.apache.spark.SparkException: Failed to execute user defined function($anonfun$27: (string) => string)
非常感谢您的帮助。
答案 0 :(得分:5)
您收到该异常是因为UDF
将对列的数据类型执行,而不是Row
。考虑我们Dataset<Row> ds
有两列col1
和col2
都是字符串类型。现在,如果我们想使用col2
将UDF
的值转换为大写。
我们可以注册并致电UDF
,如下所示。
spark.udf().register("toUpper", toUpper, DataTypes.StringType);
ds.select(col("*"),callUDF("toUpper", col("col2"))).show();
或使用withColumn
ds.withColumn("Upper",callUDF("toUpper", col("col2"))).show();
UDF
应如下所示。
private static UDF1 toUpper = new UDF1<String, String>() {
public String call(final String str) throws Exception {
return str.toUpperCase();
}
};
答案 1 :(得分:1)
改进@abaghel编写的内容。 如果您使用以下导入
import org.apache.spark.sql.functions;
使用withColumn
,代码应如下:
ds.withColumn("Upper",functions.callUDF("toUpper", ds.col("col2"))).show();