我正在尝试将标头合并为csv(@Kang的ref)作为单个文件输出
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.{FileSystem, FileUtil, Path}
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.functions._
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.{StructField, StringType, StructType}
object ListOfSavingFiltered {
def merge(srcPath: String, dstPath: String): Unit = {
val hadoopConfig = new Configuration()
val hdfs = FileSystem.get(hadoopConfig)
FileUtil.copyMerge(hdfs, new Path(srcPath), hdfs, new Path(dstPath), false, hadoopConfig, null)
// the "true" setting deletes the source files once they are merged into the new output
}
def main(args: Array[String]): Unit = {
val url = "jdbc:sqlserver://localhost;databaseName=InsightWarehouse;integratedSecurity=true";
val driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver"
val v_Account = "dbo.v_Account"
val v_Customer = "dbo.v_Customer"
val spark = SparkSession.
builder.master("local[*]")
//.config("spark.debug.maxToStringFields", "100")
.appName("Insight Application Big Data")
.getOrCreate()
val dfAccount = spark
.read
.format("jdbc")
.option("url", url)
.option("driver", driver)
.option("dbtable", v_Account)
.load()
val dfCustomer = spark
.read
.format("jdbc")
.option("url", url)
.option("driver", driver)
.option("dbtable", v_Customer)
.load()
val Classification = Seq("Contractual Account", "Non-Term Deposit", "Term Deposit")
//dfAccount.printSchema()
val joined = dfAccount.as("a")
.join(dfCustomer.as("c"),
Seq("BusinessDate", "CustomerID"), "LEFT")
.filter(
dfAccount.col("BusinessDate") === "2018-11-28"
&& dfAccount.col("Category") === "Deposit"
// && dfAccount.col("IsActive").equalTo("Yes")
&& dfAccount.col("Classification").isin(Classification: _*)
)
//joined.show()
val columnNames = Seq[String](
"a.AcctBranchName",
"c.CustomerNum",
"c.SourceCustomerId",
"a.SourceAccountId",
"a.AccountNum",
"c.FullName",
"c.LastName",
"c.BirthDate",
"a.Balance",
"a.InterestAccrued",
"a.InterestRate",
"a.SpreadRate",
"a.Classification",
"a.ProductType",
"a.ProductDesc",
"a.StartDate",
"a.MaturityDate",
"a.ClosedDate",
"a.FixOrVar",
"a.Term",
"a.TermUnit",
"a.MonthlyNetIncome",
"a.Status_",
"a.HoldsTotal",
"a.AvailableFunds",
"a.InterestRateIndex",
"a.InterestRateVariance",
"a.FeePlan",
"c.CustEmplFullName",
"a.IsActive",
"c.Residence",
"c.Village",
"c.Province",
"c.Commune",
"c.District",
"a.Currency",
"c.TaxType",
"c.TaxRate",
"RollOverStatus"
)
val outputfile = "src/main/resources/out/"
var filename = "lifOfSaving.csv.gz"
var outputFileName = outputfile + "/temp_" + filename
var mergedFileName = outputfile + "/merged_" + filename
var mergeFindGlob = outputFileName
val responseWithSelectedColumns = joined.select(columnNames.map(c => col(c)): _*)
.withColumn("RollOverStatus", when(col("RollOverStatus").equalTo("Y"), "Yes").otherwise("No"))
//create a new data frame containing only header names
import scala.collection.JavaConverters._
val headerDF = spark.createDataFrame(List(Row.fromSeq(responseWithSelectedColumns.columns.toSeq)).asJava, responseWithSelectedColumns.schema)
//merge header names with data
headerDF.union(responseWithSelectedColumns)
// .coalesce(1) //So just a single part- file will be created
.repartition(4)
.write.mode("overwrite")
.option("codec", "org.apache.hadoop.io.compress.GzipCodec")
.format("com.databricks.spark.csv")
.option("charset", "UTF8")
.option("mapreduce.fileoutputcommitter.marksuccessfuljobs", "false") //Avoid creating of crc files
.option("header", "false") //Write the header
.save(outputFileName)
merge(mergeFindGlob, mergedFileName)
responseWithSelectedColumns.unpersist()
spark.stop()
}
}
代码看似正确,但仍然收到如下错误消息:
Exception in thread "main" java.lang.ClassCastException: java.lang.String cannot be cast to java.sql.Date
at org.apache.spark.sql.catalyst.CatalystTypeConverters$DateConverter$.toCatalystImpl(CatalystTypeConverters.scala:300)
有人请帮忙吗?
答案 0 :(得分:1)
您不需要使您的标头 DataFrame
与您的数据 模式相匹配。
例如。
import org.apache.spark.sql.{SparkSession, functions => sqlfunctions}
val spark =
SparkSession
.builder
.master("local[*]")
.getOrCreate()
import spark.implicits._
val dataDF =
List(
(1, "Luis"),
(2, "kn3l")
).toDF("id", "name").withColumn("date", sqlfunctions.current_date())
val headersDF =
List(
("id", "name", "date")
).toDF("id", "name", "date")
val union = headersDF.unionByName(dataDF)
// union: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [id: string, name: string, date: string]
union.printSchema()
// root
// |-- id: string (nullable = true)
// |-- name: string (nullable = true)
// |-- date: string (nullable = true)
union.show()
// +---+----+----------+
// | id|name| date|
// +---+----+----------+
// | id|name| date|
// | 1|Luis|2018-12-05|
// | 2|kn3l|2018-12-05|
// +---+----+----------+