createDataFrame获取消息java.lang.String不能强制转换为java.sql.Date

时间:2018-12-05 13:45:37

标签: scala apache-spark apache-spark-sql

我正在尝试将标头合并为csv(@Kang的ref)作为单个文件输出

import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.{FileSystem, FileUtil, Path}
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.functions._
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.{StructField, StringType, StructType}

object ListOfSavingFiltered {
  def merge(srcPath: String, dstPath: String): Unit = {
    val hadoopConfig = new Configuration()
    val hdfs = FileSystem.get(hadoopConfig)
    FileUtil.copyMerge(hdfs, new Path(srcPath), hdfs, new Path(dstPath), false, hadoopConfig, null)
    // the "true" setting deletes the source files once they are merged into the new output
  }

  def main(args: Array[String]): Unit = {

    val url = "jdbc:sqlserver://localhost;databaseName=InsightWarehouse;integratedSecurity=true";
    val driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver"

    val v_Account = "dbo.v_Account"
    val v_Customer = "dbo.v_Customer"

    val spark = SparkSession.
      builder.master("local[*]")
      //.config("spark.debug.maxToStringFields", "100")
      .appName("Insight Application Big Data")
      .getOrCreate()


    val dfAccount = spark
      .read
      .format("jdbc")
      .option("url", url)
      .option("driver", driver)
      .option("dbtable", v_Account)
      .load()

    val dfCustomer = spark
      .read
      .format("jdbc")
      .option("url", url)
      .option("driver", driver)
      .option("dbtable", v_Customer)
      .load()

    val Classification = Seq("Contractual Account", "Non-Term Deposit", "Term Deposit")

    //dfAccount.printSchema()
    val joined = dfAccount.as("a")
      .join(dfCustomer.as("c"),
        Seq("BusinessDate", "CustomerID"), "LEFT")
      .filter(
        dfAccount.col("BusinessDate") === "2018-11-28"
          && dfAccount.col("Category") === "Deposit"
          // && dfAccount.col("IsActive").equalTo("Yes")
          && dfAccount.col("Classification").isin(Classification: _*)
         )

    //joined.show()
    val columnNames = Seq[String](
      "a.AcctBranchName",
      "c.CustomerNum",
      "c.SourceCustomerId",
      "a.SourceAccountId",
      "a.AccountNum",
      "c.FullName",
      "c.LastName",
      "c.BirthDate",
      "a.Balance",
      "a.InterestAccrued",
      "a.InterestRate",
      "a.SpreadRate",
      "a.Classification",
      "a.ProductType",
      "a.ProductDesc",
      "a.StartDate",
      "a.MaturityDate",
      "a.ClosedDate",
      "a.FixOrVar",
      "a.Term",
      "a.TermUnit",
      "a.MonthlyNetIncome",
      "a.Status_",
      "a.HoldsTotal",
      "a.AvailableFunds",
      "a.InterestRateIndex",
      "a.InterestRateVariance",
      "a.FeePlan",
      "c.CustEmplFullName",
      "a.IsActive",
      "c.Residence",
      "c.Village",
      "c.Province",
      "c.Commune",
      "c.District",
      "a.Currency",
      "c.TaxType",
      "c.TaxRate",
      "RollOverStatus"
    )

    val outputfile = "src/main/resources/out/"
    var filename = "lifOfSaving.csv.gz"
    var outputFileName = outputfile + "/temp_" + filename
    var mergedFileName = outputfile + "/merged_" + filename
    var mergeFindGlob = outputFileName

    val responseWithSelectedColumns = joined.select(columnNames.map(c => col(c)): _*)
      .withColumn("RollOverStatus", when(col("RollOverStatus").equalTo("Y"), "Yes").otherwise("No"))


    //create a new data frame containing only header names
    import scala.collection.JavaConverters._
    val headerDF = spark.createDataFrame(List(Row.fromSeq(responseWithSelectedColumns.columns.toSeq)).asJava, responseWithSelectedColumns.schema)


    //merge header names with data
    headerDF.union(responseWithSelectedColumns)
      // .coalesce(1) //So just a single part- file will be created
      .repartition(4)
      .write.mode("overwrite")
      .option("codec", "org.apache.hadoop.io.compress.GzipCodec")
      .format("com.databricks.spark.csv")
      .option("charset", "UTF8")
      .option("mapreduce.fileoutputcommitter.marksuccessfuljobs", "false") //Avoid creating of crc files
      .option("header", "false") //Write the header

      .save(outputFileName)
    merge(mergeFindGlob, mergedFileName)
    responseWithSelectedColumns.unpersist()

    spark.stop()
  }
}

代码看似正确,但仍然收到如下错误消息:

Exception in thread "main" java.lang.ClassCastException: java.lang.String cannot be cast to java.sql.Date
    at org.apache.spark.sql.catalyst.CatalystTypeConverters$DateConverter$.toCatalystImpl(CatalystTypeConverters.scala:300)

有人请帮忙吗?

1 个答案:

答案 0 :(得分:1)

您不需要使您的标头 DataFrame与您的数据 模式相匹配。

例如。

import org.apache.spark.sql.{SparkSession, functions => sqlfunctions}

val spark =
  SparkSession
  .builder
  .master("local[*]")
  .getOrCreate()
import spark.implicits._

val dataDF =
  List(
    (1, "Luis"),
    (2, "kn3l")
  ).toDF("id", "name").withColumn("date", sqlfunctions.current_date())

val headersDF = 
  List(
    ("id", "name", "date")
  ).toDF("id", "name", "date")

val union = headersDF.unionByName(dataDF)
// union: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [id: string, name: string, date: string]

union.printSchema()
// root
// |-- id: string (nullable = true)
// |-- name: string (nullable = true)
// |-- date: string (nullable = true)

union.show()
// +---+----+----------+
// | id|name|      date|
// +---+----+----------+
// | id|name|      date|
// |  1|Luis|2018-12-05|
// |  2|kn3l|2018-12-05|
// +---+----+----------+