也许我的问题看起来很愚蠢。
我正在研究Q学习算法。为了更好地理解它,我尝试将this FrozenLake示例的Tenzorflow代码重新编译为Keras代码。
我的代码:
import gym
import numpy as np
import random
from keras.layers import Dense
from keras.models import Sequential
from keras import backend as K
import matplotlib.pyplot as plt
%matplotlib inline
env = gym.make('FrozenLake-v0')
model = Sequential()
model.add(Dense(16, activation='relu', kernel_initializer='uniform', input_shape=(16,)))
model.add(Dense(4, activation='softmax', kernel_initializer='uniform'))
def custom_loss(yTrue, yPred):
return K.sum(K.square(yTrue - yPred))
model.compile(loss=custom_loss, optimizer='sgd')
# Set learning parameters
y = .99
e = 0.1
#create lists to contain total rewards and steps per episode
jList = []
rList = []
num_episodes = 2000
for i in range(num_episodes):
current_state = env.reset()
rAll = 0
d = False
j = 0
while j < 99:
j+=1
current_state_Q_values = model.predict(np.identity(16)[current_state:current_state+1], batch_size=1)
action = np.reshape(np.argmax(current_state_Q_values), (1,))
if np.random.rand(1) < e:
action[0] = env.action_space.sample() #random action
new_state, reward, d, _ = env.step(action[0])
rAll += reward
jList.append(j)
rList.append(rAll)
new_Qs = model.predict(np.identity(16)[new_state:new_state+1], batch_size=1)
max_newQ = np.max(new_Qs)
targetQ = current_state_Q_values
targetQ[0,action[0]] = reward + y*max_newQ
model.fit(np.identity(16)[current_state:current_state+1], targetQ, verbose=0, batch_size=1)
current_state = new_state
if d == True:
#Reduce chance of random action as we train the model.
e = 1./((i/50) + 10)
break
print("Percent of succesful episodes: " + str(sum(rList)/num_episodes) + "%")
当我运行它时,它不能很好地工作:成功剧集的百分比:0.052%
plt.plot(rList)
original Tensorflow code更好:成功集数百分比:0.352%
plt.plot(rList)
我做错了什么?
答案 0 :(得分:0)
除了在评论中提到的将use_bias = False设置为@Maldus之外,你可以尝试的另一件事是从更高的epsilon值开始(例如0.5,0.75)?一个技巧可能只是在达到目标时减少epsilon值。即每次剧集结束时不要减少epsilon。这样你的玩家可以随机地继续探索地图,直到它开始收敛于一条好的路线,然后减少epsilon参数是个好主意。
我实际上使用卷积层而不是密集层在此gist中在keras中实现了类似的模型。管理以使其在2000集以下的情况下工作。可能对别人有所帮助:))