我正在尝试解决openAI健身房中的棘手问题。通过Q学习。我认为我误解了Q学习的工作原理,因为我的模型没有得到改善。
我正在使用字典作为我的Q表。因此,我每次观察都“散列”(变成字符串)。并以此作为我表中的键。
我表中的每个键(观察)都映射到另一个字典。我将在此状态下执行的每个移动及其相关的Q值存储在哪里。
话虽如此,我表中的条目可能看起来像这样:
'[''0.102'', ''1.021'', ''-0.133'', ''-1.574'']':
0: 0.1
所以处于状态(观察):'[''0.102'', ''1.021'', ''-0.133'', ''-1.574'']'
已记录一个动作:0
,其q值为:0.01
。
我的逻辑在这里吗?我真的无法弄清楚我的实现是否出错。
import gym
import random
import numpy as np
ENV = 'CartPole-v0'
env = gym.make(ENV)
class Qtable:
def __init__(self):
self.table = {}
def update_table(self, obs, action, value):
obs_hash = self.hash_obs(obs)
# Update table with new observation
if not obs_hash in self.table:
self.table[obs_hash] = {}
self.table[obs_hash][action] = value
else:
# Check if action has been recorded
# If such, check if this value was better
# If not, record new action for this obs
if action in self.table[obs_hash]:
if value > self.table[obs_hash][action]:
self.table[obs_hash][action] = value
else:
self.table[obs_hash][action] = value
def get_prev_value(self, obs, action):
obs_hash = self.hash_obs(obs)
if obs_hash in self.table:
if action in self.table[obs_hash]:
return self.table[obs_hash][action]
return 0
def get_max_value(self, obs):
obs_hash = self.hash_obs(obs)
if obs_hash in self.table:
key = max(self.table[obs_hash])
return self.table[obs_hash][key]
return 0
def has_action(self, obs):
obs_hash = self.hash_obs(obs)
if obs_hash in self.table:
if len(self.table[obs_hash]) > 0:
return True
return False
def get_best_action(self, obs):
obs_hash = self.hash_obs(obs)
if obs_hash in self.table:
return max(self.table[obs_hash])
# Makes a hashable entry of the observation
def hash_obs(self, obs):
return str(['{:.3f}'.format(i) for i in obs])
def play():
q_table = Qtable()
# Hyperparameters
alpha = 0.1
gamma = 0.6
epsilon = 0.1
episodes = 1000
total = 0
for i in range(episodes):
done = False
prev_obs = env.reset()
episode_reward = 0
while not done:
if random.uniform(0, 1) > epsilon and q_table.has_action(prev_obs):
# Exploit learned values
action = q_table.get_best_action(prev_obs)
else:
# Explore action space
action = env.action_space.sample()
# Render the environment
#env.render()
# Take a step
obs, reward, done, info = env.step(action)
if done:
reward = -200
episode_reward += reward
old_value = q_table.get_prev_value(prev_obs, action)
next_max = q_table.get_max_value(obs)
# Get the current sate value
new_value = (1-alpha)*old_value + alpha*(reward + gamma*next_max)
q_table.update_table(obs, action, new_value)
prev_obs = obs
total += episode_reward
print("average", total/episodes)
env.close()
play()
答案 0 :(得分:1)
我想我明白了。我误解了这部分new_value = (1-alpha)*old_value + alpha*(reward + gamma*next_max)
next_max
是下一个状态的最佳动作。而不是(应该是)此子树的最大值。
因此,将Q表实现为哈希表可能不是一个好主意。