我已经在Tensorflow(版本1.3)和Seq2Seq模型上工作了一段时间,我有一个工作的Seq2Seq模型,但是当我尝试添加注意它时我出错了错误:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-118-a6d1c9e78e5d> in <module>()
26 rnn_size,
27 num_layers,
---> 28 target_vocab_to_int)
29
30
<ipython-input-116-41a4ee1f8ac2> in seq2seq_model(input_data, target_data, keep_prob, batch_size, source_sequence_length, target_sequence_length, max_target_sentence_length, source_vocab_size, target_vocab_size, enc_embedding_size, dec_embedding_size, rnn_size, num_layers, target_vocab_to_int)
32 2*rnn_size,
33 num_layers, target_vocab_to_int, target_vocab_size,
---> 34 batch_size, keep_prob, dec_embedding_size , enc_out)
35
36 return training_decoder_output, inference_decoder_output
<ipython-input-115-3a03827107f3> in decoding_layer(dec_input, encoder_state, target_sequence_length, max_target_sequence_length, rnn_size, num_layers, target_vocab_to_int, target_vocab_size, batch_size, keep_prob, decoding_embedding_size, encoder_outputs)
55 with tf.variable_scope("decode"):
56 train_decoder_out = decoding_layer_train(new_state, attn_cell, dec_embed_input,
---> 57 target_sequence_length, max_target_sequence_length, output_layer, keep_prob)
58
59 with tf.variable_scope("decode", reuse=True):
<ipython-input-12-484f2d84b18e> in decoding_layer_train(encoder_state, dec_cell, dec_embed_input, target_sequence_length, max_summary_length, output_layer, keep_prob)
23 training_decoder_output = tf.contrib.seq2seq.dynamic_decode(training_decoder,
24 impute_finished=True,
---> 25 maximum_iterations=max_summary_length)[0]
26 return training_decoder_output
27
/Users/alsulaimi/Documents/AI/TensorFlow/workSpace/lib/python2.7/site-packages/tensorflow/contrib/seq2seq/python/ops/decoder.pyc in dynamic_decode(decoder, output_time_major, impute_finished, maximum_iterations, parallel_iterations, swap_memory, scope)
284 ],
285 parallel_iterations=parallel_iterations,
--> 286 swap_memory=swap_memory)
287
288 final_outputs_ta = res[1]
/Users/alsulaimi/Documents/AI/TensorFlow/workSpace/lib/python2.7/site-packages/tensorflow/python/ops/control_flow_ops.pyc in while_loop(cond, body, loop_vars, shape_invariants, parallel_iterations, back_prop, swap_memory, name)
2773 context = WhileContext(parallel_iterations, back_prop, swap_memory, name)
2774 ops.add_to_collection(ops.GraphKeys.WHILE_CONTEXT, context)
-> 2775 result = context.BuildLoop(cond, body, loop_vars, shape_invariants)
2776 return result
2777
/Users/alsulaimi/Documents/AI/TensorFlow/workSpace/lib/python2.7/site-packages/tensorflow/python/ops/control_flow_ops.pyc in BuildLoop(self, pred, body, loop_vars, shape_invariants)
2602 self.Enter()
2603 original_body_result, exit_vars = self._BuildLoop(
-> 2604 pred, body, original_loop_vars, loop_vars, shape_invariants)
2605 finally:
2606 self.Exit()
/Users/alsulaimi/Documents/AI/TensorFlow/workSpace/lib/python2.7/site-packages/tensorflow/python/ops/control_flow_ops.pyc in _BuildLoop(self, pred, body, original_loop_vars, loop_vars, shape_invariants)
2493 # Let the context know the loop variables so the loop variables
2494 # would be added in the outer contexts properly.
-> 2495 self._InitializeValues(loop_vars)
2496 real_vars = loop_vars
2497 if self._outer_context:
/Users/alsulaimi/Documents/AI/TensorFlow/workSpace/lib/python2.7/site-packages/tensorflow/python/ops/control_flow_ops.pyc in _InitializeValues(self, values)
2475 self._values.add(x.name)
2476 else:
-> 2477 self._values.add(x.values.name)
2478 self._values.add(x.indices.name)
2479 if isinstance(x, ops.IndexedSlices):
AttributeError: 'NoneType' object has no attribute 'values'.
我试图谷歌修复,但我没有找到任何解决方案,在BeamSearchDecoder上发现类似的问题,但它似乎是一个错误( here)
如果我在代码中做错了,或者我只是踩了一个错误,我就不会放弃,下面是我的代码的相关部分:
def decoding_layer(dec_input, encoder_state,
target_sequence_length, max_target_sequence_length,
rnn_size,
num_layers, target_vocab_to_int, target_vocab_size,
batch_size, keep_prob, decoding_embedding_size , encoder_outputs):
"""
Create decoding layer
:param dec_input: Decoder input
:param encoder_state: Encoder state
:param target_sequence_length: The lengths of each sequence in the target batch
:param max_target_sequence_length: Maximum length of target sequences
:param rnn_size: RNN Size
:param num_layers: Number of layers
:param target_vocab_to_int: Dictionary to go from the target words to an id
:param target_vocab_size: Size of target vocabulary
:param batch_size: The size of the batch
:param keep_prob: Dropout keep probability
:param decoding_embedding_size: Decoding embedding size
:return: Tuple of (Training BasicDecoderOutput, Inference BasicDecoderOutput)
"""
# 1. Decoder Embedding
dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, decoding_embedding_size]))
dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input)
# 2. Construct the decoder cell
def create_cell(rnn_size):
lstm_cell = tf.contrib.rnn.LSTMCell(rnn_size,
initializer=tf.random_uniform_initializer(-0.1,0.1,seed=2))
drop = tf.contrib.rnn.DropoutWrapper(lstm_cell, output_keep_prob=keep_prob)
return drop
dec_cell = tf.contrib.rnn.MultiRNNCell([create_cell(rnn_size) for _ in range(num_layers)])
#dec_cell = tf.contrib.rnn.MultiRNNCell(cells_a)
#attention details
attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(num_units=rnn_size, memory=encoder_outputs)
attn_cell = tf.contrib.seq2seq.AttentionWrapper(dec_cell, attention_mechanism , attention_layer_size=rnn_size/2)
attn_zero = attn_cell.zero_state(batch_size , tf.float32 )
attn_zero = attn_zero.clone(cell_state = encoder_state)
new_state = tf.contrib.seq2seq.AttentionWrapperState(cell_state = encoder_state, attention = attn_zero , time = 0 ,alignments=None , alignment_history=())
"""out_cell = tf.contrib.rnn.OutputProjectionWrapper(
attn_cell, target_vocab_size, reuse=True
)"""
#end of attention
output_layer = Dense(target_vocab_size,
kernel_initializer = tf.truncated_normal_initializer(mean = 0.0, stddev=0.1))
with tf.variable_scope("decode"):
train_decoder_out = decoding_layer_train(new_state, attn_cell, dec_embed_input,
target_sequence_length, max_target_sequence_length, output_layer, keep_prob)
with tf.variable_scope("decode", reuse=True):
infer_decoder_out = decoding_layer_infer(new_state, attn_cell, dec_embeddings,
target_vocab_to_int['<GO>'], target_vocab_to_int['<EOS>'], max_target_sequence_length,
target_vocab_size, output_layer, batch_size, keep_prob)
return (train_decoder_out, infer_decoder_out)
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
#tests.test_decoding_layer(decoding_layer)
def decoding_layer_train(encoder_state, dec_cell, dec_embed_input,
target_sequence_length, max_summary_length,
output_layer, keep_prob):
"""
Create a decoding layer for training
:param encoder_state: Encoder State
:param dec_cell: Decoder RNN Cell
:param dec_embed_input: Decoder embedded input
:param target_sequence_length: The lengths of each sequence in the target batch
:param max_summary_length: The length of the longest sequence in the batch
:param output_layer: Function to apply the output layer
:param keep_prob: Dropout keep probability
:return: BasicDecoderOutput containing training logits and sample_id
"""
training_helper = tf.contrib.seq2seq.TrainingHelper(inputs=dec_embed_input,
sequence_length=target_sequence_length,
time_major=False)
training_decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, training_helper, encoder_state, output_layer)
training_decoder_output = tf.contrib.seq2seq.dynamic_decode(training_decoder,
impute_finished=True,
maximum_iterations=max_summary_length)[0]
return training_decoder_output
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
#tests.test_decoding_layer_train(decoding_layer_train)
我非常感谢你的帮助,谢谢你的推荐
答案 0 :(得分:0)
好的,所以我做错了,原来问题是在函数decode_layer中我不应该显式创建AttentionWrapperState,下面是更新后的代码:
def decoding_layer(dec_input, encoder_state,
target_sequence_length, max_target_sequence_length,
rnn_size,
num_layers, target_vocab_to_int, target_vocab_size,
batch_size, keep_prob, decoding_embedding_size , encoder_outputs):
"""
Create decoding layer
:param dec_input: Decoder input
:param encoder_state: Encoder state
:param target_sequence_length: The lengths of each sequence in the target batch
:param max_target_sequence_length: Maximum length of target sequences
:param rnn_size: RNN Size
:param num_layers: Number of layers
:param target_vocab_to_int: Dictionary to go from the target words to an id
:param target_vocab_size: Size of target vocabulary
:param batch_size: The size of the batch
:param keep_prob: Dropout keep probability
:param decoding_embedding_size: Decoding embedding size
:return: Tuple of (Training BasicDecoderOutput, Inference BasicDecoderOutput)
"""
# 1. Decoder Embedding
dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, decoding_embedding_size]))
dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input)
# 2. Construct the decoder cell
def create_cell(rnn_size):
lstm_cell = tf.contrib.rnn.LSTMCell(rnn_size,
initializer=tf.random_uniform_initializer(-0.1,0.1,seed=2))
drop = tf.contrib.rnn.DropoutWrapper(lstm_cell, output_keep_prob=keep_prob)
return drop
dec_cell = tf.contrib.rnn.MultiRNNCell([create_cell(rnn_size) for _ in range(num_layers)])
#dec_cell = tf.contrib.rnn.MultiRNNCell(cells_a)
#attention details
attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(num_units=rnn_size, memory=encoder_outputs)
attn_cell = tf.contrib.seq2seq.AttentionWrapper(dec_cell, attention_mechanism , attention_layer_size=rnn_size/2)
attn_zero = attn_cell.zero_state(batch_size , tf.float32 )
attn_zero = attn_zero.clone(cell_state = encoder_state)
#new_state = tf.contrib.seq2seq.AttentionWrapperState(cell_state = encoder_state, attention = attn_zero , time = 0 ,alignments=None , alignment_history=())
"""out_cell = tf.contrib.rnn.OutputProjectionWrapper(
attn_cell, target_vocab_size, reuse=True
)"""
#end of attention
#tensor_util.make_tensor_proto(attn_cell)
output_layer = Dense(target_vocab_size,
kernel_initializer = tf.truncated_normal_initializer(mean = 0.0, stddev=0.1))
with tf.variable_scope("decode"):
train_decoder_out = decoding_layer_train(attn_zero, attn_cell, dec_embed_input,
target_sequence_length, max_target_sequence_length, output_layer, keep_prob)
with tf.variable_scope("decode", reuse=True):
infer_decoder_out = decoding_layer_infer(attn_zero, attn_cell, dec_embeddings,
target_vocab_to_int['<GO>'], target_vocab_to_int['<EOS>'], max_target_sequence_length,
target_vocab_size, output_layer, batch_size, keep_prob)
return (train_decoder_out, infer_decoder_out)
我希望这有助于其他人
谢谢