Tensorflow:tf.argmax和切片

时间:2017-08-23 09:45:55

标签: python tensorflow slice argmax

我想设计这个损失函数:

sum((y[argmax(y_)] - y_[argmax(y_)])²)

我找不到办法y[argmax(y_)]。我尝试了y[k]y[:,k]y[None,k]这些工作。这是我的代码:

    Na = 3
    x = tf.placeholder(tf.float32, [None, 2])
    W = tf.Variable(tf.zeros([2, Na]))
    b = tf.Variable(tf.zeros([Na]))
    y = tf.nn.relu(tf.matmul(x, W) + b)
    y_ = tf.placeholder(tf.float32, [None, 3])
    k = tf.argmax(y_, 1)
    diff = y[k] - y_[k]
    loss = tf.reduce_sum(tf.square(diff))

错误:

  File "/home/ncarrara/phd/code/cython/robotnavigation/ftq/cftq19.py", line 156, in <module>
    diff = y[k] - y_[k]
  File "/home/ncarrara/miniconda3/lib/python2.7/site-packages/tensorflow/python/ops/array_ops.py", line 499, in _SliceHelper
    name=name)
  File "/home/ncarrara/miniconda3/lib/python2.7/site-packages/tensorflow/python/ops/array_ops.py", line 663, in strided_slice
    shrink_axis_mask=shrink_axis_mask)
  File "/home/ncarrara/miniconda3/lib/python2.7/site-packages/tensorflow/python/ops/gen_array_ops.py", line 3515, in strided_slice
    shrink_axis_mask=shrink_axis_mask, name=name)
  File "/home/ncarrara/miniconda3/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 767, in apply_op
    op_def=op_def)
  File "/home/ncarrara/miniconda3/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2508, in create_op
    set_shapes_for_outputs(ret)
  File "/home/ncarrara/miniconda3/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1873, in set_shapes_for_outputs
    shapes = shape_func(op)
  File "/home/ncarrara/miniconda3/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1823, in call_with_requiring
    return call_cpp_shape_fn(op, require_shape_fn=True)
  File "/home/ncarrara/miniconda3/lib/python2.7/site-packages/tensorflow/python/framework/common_shapes.py", line 610, in call_cpp_shape_fn
    debug_python_shape_fn, require_shape_fn)
  File "/home/ncarrara/miniconda3/lib/python2.7/site-packages/tensorflow/python/framework/common_shapes.py", line 676, in _call_cpp_shape_fn_impl
    raise ValueError(err.message)
ValueError: Shape must be rank 1 but is rank 2 for 'strided_slice' (op: 'StridedSlice') with input shapes: [?,3], [1,?], [1,?], [1].

1 个答案:

答案 0 :(得分:2)

可以使用tf.gather_nd完成:

import tensorflow as tf

Na = 3
x = tf.placeholder(tf.float32, [None, 2])
W = tf.Variable(tf.zeros([2, Na]))
b = tf.Variable(tf.zeros([Na]))
y = tf.nn.relu(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, 3])
k = tf.argmax(y_, 1)
# Make index tensor with row and column indices
num_examples = tf.cast(tf.shape(x)[0], dtype=k.dtype)
idx = tf.stack([tf.range(num_examples), k], axis=-1)
diff = tf.gather_nd(y, idx) - tf.gather_nd(y_, idx)
loss = tf.reduce_sum(tf.square(diff))

说明:

在这种情况下,tf.gather_nd的想法是创建一个矩阵(一个二维张量),其中每一行包含输出中要包含的行和列的索引。例如,如果我有一个矩阵a,其中包含:

| 1 2 3 |
| 4 5 6 |
| 7 8 9 |

包含以下内容的矩阵i

| 1 2 |
| 0 1 |
| 2 2 |
| 1 0 |

然后tf.gather_nd(a, i)的结果将是包含:

的向量(一维张量)
| 6 |
| 2 |
| 9 |
| 4 |

在这种情况下,列索引由tf.argmax中的k给出;它告诉你,对于每一行,哪一列是具有最高值的列。现在你只需要将行索引与每个行放在一起。 k中的第一个元素是第0行中最大值列的索引,下一个元素是第1行的索引,依此类推。 num_examples只是x中的行数,而tf.range(num_examples)会给出一个从0到x减1的行数的向量(即所有序列)行索引)。现在,您只需将ktf.stack放在一起,idx的结果tf.gather_nd就是Package Control: Add Repository的参数。