尝试将我的程序(libsvm.c和libsvm.h)与libsvm.cpp链接起来进行简单的预测

时间:2017-08-21 08:07:49

标签: c machine-learning linker libsvm

我正在尝试使用LIBSVM在Eclipse上使用C来执行二进制类机器学习(仅限2类)。在我开始使用我的训练数据之前,我尝试运行一个简单的XOR问题来查看我的LIBSVM是否可以预测正确的输出值(这应该是+1)。

然而,在我构建项目之后,我遇到了诸如“未定义引用'_Heap_Begin'”,“未定义引用'_Heap_Limit'”,“未定义引用'svm_train'”,“未定义引用'svm_predict'等错误“和”未定义引用'svm_destroy_param'“。似乎libsvm.c文件没有链接到libsvm.cpp文件,即使我已经在libsvm.c和libsvm.cpp中#include“libsvm.h”。有谁可以帮我解决这个问题?提前谢谢!

libsvm.h:

#ifndef _LIBSVM_H
#define _LIBSVM_H

#define LIBSVM_VERSION 322

#ifdef __cplusplus
extern "C" {
#endif

extern int libsvm_version;

struct svm_node
{
    int index;
    double value;
};

struct svm_problem
{
    int l;
    double *y;
    struct svm_node **x;
};

enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR }; /* svm_type */
enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */

struct svm_parameter
{
    int svm_type;
    int kernel_type;
    int degree; /* for poly */
    double gamma;   /* for poly/rbf/sigmoid */
    double coef0;   /* for poly/sigmoid */

    /* these are for training only */
    double cache_size; /* in MB */
    double eps; /* stopping criteria */
    double C;   /* for C_SVC, EPSILON_SVR and NU_SVR */
    int nr_weight;      /* for C_SVC */
    int *weight_label;  /* for C_SVC */
    double* weight;     /* for C_SVC */
    double nu;  /* for NU_SVC, ONE_CLASS, and NU_SVR */
    double p;   /* for EPSILON_SVR */
    int shrinking;  /* use the shrinking heuristics */
    int probability; /* do probability estimates */
};

//
// svm_model
//
struct svm_model
{
    struct svm_parameter param; /* parameter */
    int nr_class;       /* number of classes, = 2 in regression/one class svm */
    int l;          /* total #SV */
    struct svm_node **SV;       /* SVs (SV[l]) */
    double **sv_coef;   /* coefficients for SVs in decision functions (sv_coef[k-1][l]) */
    double *rho;        /* constants in decision functions (rho[k*(k-1)/2]) */
    double *probA;      /* pariwise probability information */
    double *probB;
    int *sv_indices;        /* sv_indices[0,...,nSV-1] are values in [1,...,num_traning_data] to indicate SVs in the training set */

    /* for classification only */

    int *label;     /* label of each class (label[k]) */
    int *nSV;       /* number of SVs for each class (nSV[k]) */
                /* nSV[0] + nSV[1] + ... + nSV[k-1] = l */
    /* XXX */
    int free_sv;        /* 1 if svm_model is created by svm_load_model*/
                /* 0 if svm_model is created by svm_train */
};

struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param);
void svm_cross_validation(const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target);

int svm_save_model(const char *model_file_name, const struct svm_model *model);
struct svm_model *svm_load_model(const char *model_file_name);

int svm_get_svm_type(const struct svm_model *model);
int svm_get_nr_class(const struct svm_model *model);
void svm_get_labels(const struct svm_model *model, int *label);
void svm_get_sv_indices(const struct svm_model *model, int *sv_indices);
int svm_get_nr_sv(const struct svm_model *model);
double svm_get_svr_probability(const struct svm_model *model);

double svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* dec_values);
double svm_predict(const struct svm_model *model, const struct svm_node *x);
double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double* prob_estimates);

void svm_free_model_content(struct svm_model *model_ptr);
void svm_free_and_destroy_model(struct svm_model **model_ptr_ptr);
void svm_destroy_param(struct svm_parameter *param);

const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param);
int svm_check_probability_model(const struct svm_model *model);

void svm_set_print_string_function(void (*print_func)(const char *));

#ifdef __cplusplus
}
#endif

#endif /* _LIBSVM_H */

libsvm.c:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <errno.h>
#include "libsvm.h"
#include "main.h"
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))

struct svm_parameter param;     // set by parse_command_line
struct svm_problem prob;        // set by read_problem
struct svm_model *model;
struct svm_node *x_space;
struct svm_node ** x;
struct svm_node *testnode;

void makeModel2(void)
{
    param.svm_type = C_SVC;
    param.kernel_type = RBF;
    param.degree = 3;
    param.gamma = 0.5;
    param.coef0 = 0;
    param.nu = 0.5;
    param.cache_size = 100;
    param.C = 1;
    param.eps = 1e-3;
    param.p = 0.1;
    param.shrinking = 1;
    param.probability = 0;
    param.nr_weight = 0;
    param.weight_label = NULL;
    param.weight = NULL;


    //Problem definition-------------------------------------------------------------
    prob.l = 4;

    //x values matrix of xor values (training data)
    double matrix[prob.l][2];
    matrix[0][0] = 1;
    matrix[0][1] = 1;

    matrix[1][0] = 1;
    matrix[1][1] = 0;

    matrix[2][0] = 0;
    matrix[2][1] = 1;

    matrix[3][0] = 0;
    matrix[3][1] = 0;

    // this part i do not understand
    struct svm_node** x = (struct svm_node * *)malloc((prob.l)*sizeof(struct svm_node *));

    //Trying to assign from matrix to svm_node training examples
    for (int row = 0;row <prob.l; row++){
        struct svm_node* x_space = Malloc(struct svm_node,3);
        for (int col = 0;col < 2;col++){
            x_space[col].index = col;
            x_space[col].value = matrix[row][col];
        }
        x_space[2].index = -1;      //Each row of properties should be terminated with a -1 according to the readme
        x[row] = x_space;
    }

    prob.x = x;

    //yvalues
    prob.y = (double *)malloc((prob.l)*sizeof(double));
    prob.y[0] = -1;
    prob.y[1] = 1;
    prob.y[2] = 1;
    prob.y[3] = -1;

    //Train model---------------------------------------------------------------------
    struct svm_model *model = svm_train(&prob,&param);


    //Test model----------------------------------------------------------------------
    struct svm_node *testnode = (struct svm_node *) malloc((3)*sizeof(struct svm_node));
    testnode[0].index = 0;
    testnode[0].value = 1;
    testnode[1].index = 1;
    testnode[1].value = 0;
    testnode[2].index = -1;

    double retval = svm_predict(model,testnode);

    svm_destroy_param(&param);
    free(prob.y);
    free(prob.x);
    free(x_space);

}

0 个答案:

没有答案