在python中使用TensorFlow,我有以下代码:
sess = tf.InteractiveSession() # so I can eval()
t1 = tf.convert_to_tensor([[1,4,5],[34,5,1],[53,1,4]],dtype=tensorflow.float32)
t1.eval()
OUTPUT>> array([[ 1., 4., 5.],
[ 34., 5., 1.],
[ 53., 1., 4.]], dtype=float32)
# so far, so good!
t1_inverse = tf.matrix_inverse(t1)
t1_inverse.eval()
OUTPUT>> array([[-0.01294278, 0.00749319, 0.01430518],
[ 0.05653951, 0.17779292, -0.11512262],
[ 0.15735695, -0.14373296, 0.08923706]], dtype=float32)
# I'm not a math whiz but this looks like an inverted matrix to me!
(t1*t1_inverse).eval() # should yield identity matrix, but..
OUTPUT>> array([[-0.01294278, 0.02997275, 0.07152588],
[ 1.92234337, 0.88896459, -0.11512262],
[ 8.33991814, -0.14373296, 0.35694823]], dtype=float32)
所以我的问题是,为什么矩阵t1乘以其逆不产生单位矩阵,或[[1,0,0],[0,1,0],[0,0,1]]?< / p>
答案 0 :(得分:1)
此处t1*t1_inverse
是逐元素乘法,您需要使用tf.matmul
idenity_mat = tf.matmul(t1, t1_inverse)
sess.run(identity_mat)
# Results: array([[ 1.00000000e+00, 5.96046448e-08, 0.00000000e+00],
[ 0.00000000e+00, 1.00000000e+00, -6.70552254e-08],
[ 0.00000000e+00, 5.96046448e-08, 9.99999881e-01]], dtype=float32)
答案 1 :(得分:1)
您在代码中使用了正常的乘法符号:
(t1*t1_inverse).eval()
我认为我会做broadcast multiplication
您要使用的是matmul
tf.matmul(t1,t1_inverse)