我想适合以下功能:
def invlaplace_stehfest2(time,EL,tau):
upsilon=0.25
pmax=6.9
E0=0.0154
M=8
results=[]
for t in time:
func=0
for k in range(1,2*M+1):
SUM=0
for j in range(int(math.floor((k+1)/2)),min(k,M)+1):
dummy=j**(M+1)*scipy.special.binom(M,j)*scipy.special.binom(2*j,j)*scipy.special.binom(j,k-j)/scipy.math.factorial(M)
SUM+=dummy
s=k*math.log(2)/t[enter image description here][1]
func+=(-1)**(M+k)*SUM*pmax*EL/(mp.exp(tau*s)*mp.expint(1,tau*s)*E0+EL)/s
func=func*math.log(2)/t
results.append(func)
return [float(i) for i in results]
为此,我使用以下数据:
data_time=np.array([69.0,99.0,139.0,179.0,219.0,259.0,295.5,299.03])
data_relax=np.array([6.2536,6.1652,6.0844,6.0253,5.9782,5.9404,5.9104,5.9066])
随着猜测:
guess=np.array([0.1,0.05])
scipy.optimize.curve_fit()如下:
Parameter,Covariance=scipy.optimize.curve_fit(invlaplace_stehfest2,data_time,data_relax,guess)
由于我不明白我无法正确拟合数据的原因。我得到以下图表。
我的功能无疑是正确的,因为当我使用正确的猜测时:
guess=np.array([0.33226685047281592707364253044085038793404361200072,8.6682623502960394383501102909774397295654841654769])
我能够正确匹配我的数据。
有关为何我无法正确佩戴的提示?我应该使用其他方法吗?
这是洞程序:
##############################################
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import matplotlib.pylab as mplab
import math
from math import *
import numpy as np
import scipy
from scipy.optimize import curve_fit
import mpmath as mp
############################################################################################
def invlaplace_stehfest2(time,EL,tau):
upsilon=0.25
pmax=6.9
E0=0.0154
M=8
results=[]
for t in time:
func=0
for k in range(1,2*M+1):
SUM=0
for j in range(int(math.floor((k+1)/2)),min(k,M)+1):
dummy=j**(M+1)*scipy.special.binom(M,j)*scipy.special.binom(2*j,j)*scipy.special.binom(j,k-j)/scipy.math.factorial(M)
SUM+=dummy
s=k*math.log(2)/t
func+=(-1)**(M+k)*SUM*pmax*EL/(mp.exp(tau*s)*mp.expint(1,tau*s)*E0+EL)/s
func=func*math.log(2)/t
results.append(func)
return [float(i) for i in results]
############################################################################################
###Constant###
####Value####
data_time=np.array([69.0,99.0,139.0,179.0,219.0,259.0,295.5,299.03])
data_relax=np.array([6.2536,6.1652,6.0844,6.0253,5.9782,5.9404,5.9104,5.9066])
###Fitting###
guess=np.array([0.33226685047281592707364253044085038793404361200072,8.6682623502960394383501102909774397295654841654769])
#guess=np.array([0.1,0.05])
Parameter,Covariance=scipy.optimize.curve_fit(invlaplace_stehfest2,data_time,data_relax,guess)
print Parameter
residu=sum(data_relax-invlaplace_stehfest2(data_time,Parameter[0],Parameter[1]))
Graph_Curves=plt.figure()
ax = Graph_Curves.add_subplot(111)
ax.plot(data_time,invlaplace_stehfest2(data_time,Parameter[0],Parameter[1]),"-")
ax.plot(data_time,data_relax,"o")
plt.show()
答案 0 :(得分:0)
非线性拟合,例如scipy.optimize.curve_fit()中使用的默认Levenberg-Marquardt求解器,与大多数迭代求解器一样,可以在误差空间中以局部最小值停止。如果错误空间是"颠簸"那么初始参数估计变得非常重要,就像在这种情况下一样。
Scipy已将差分进化遗传算法添加到优化模块,该算法可用于确定curve_fit()的初始参数估计。 Scipy的实现使用Latin Hypercube算法来确保彻底搜索参数空间,需要参数上限和下限进行搜索。正如您在下面看到的,我使用了这个scipy模块来替换名为" guess"的值的硬编码值。在你的代码中。这不会很快运行,但正确结果稍微慢一点,比快速错误的结果要好得多。试试这段代码:
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import matplotlib.pylab as mplab
import math
from math import *
import numpy as np
import scipy
from scipy.optimize import curve_fit
from scipy.optimize import differential_evolution
import mpmath as mp
############################################################################################
def invlaplace_stehfest2(time,EL,tau):
upsilon=0.25
pmax=6.9
E0=0.0154
M=8
results=[]
for t in time:
func=0
for k in range(1,2*M+1):
SUM=0
for j in range(int(math.floor((k+1)/2)),min(k,M)+1):
dummy=j**(M+1)*scipy.special.binom(M,j)*scipy.special.binom(2*j,j)*scipy.special.binom(j,k-j)/scipy.math.factorial(M)
SUM+=dummy
s=k*math.log(2)/t
func+=(-1)**(M+k)*SUM*pmax*EL/(mp.exp(tau*s)*mp.expint(1,tau*s)*E0+EL)/s
func=func*math.log(2)/t
results.append(func)
return [float(i) for i in results]
############################################################################################
###Constant###
####Value####
data_time=np.array([69.0,99.0,139.0,179.0,219.0,259.0,295.5,299.03])
data_relax=np.array([6.2536,6.1652,6.0844,6.0253,5.9782,5.9404,5.9104,5.9066])
# function for genetic algorithm to minimize (sum of squared error)
def sumOfSquaredError(parameterTuple):
return np.sum((data_relax - invlaplace_stehfest2(data_time, *parameterTuple)) ** 2)
###Fitting###
#guess=np.array([0.33226685047281592707364253044085038793404361200072,8.6682623502960394383501102909774397295654841654769])
#guess=np.array([0.1,0.05])
parameterBounds = [[0.0, 1.0], [0.0, 10.0]]
# "seed" the numpy random number generator for repeatable results
# note the ".x" here to return only the parameter estimates in this example
guess = differential_evolution(sumOfSquaredError, parameterBounds, seed=3).x
Parameter,Covariance=scipy.optimize.curve_fit(invlaplace_stehfest2,data_time,data_relax,guess)
print Parameter
residu=sum(data_relax-invlaplace_stehfest2(data_time,Parameter[0],Parameter[1]))
Graph_Curves=plt.figure()
ax = Graph_Curves.add_subplot(111)
ax.plot(data_time,invlaplace_stehfest2(data_time,Parameter[0],Parameter[1]),"-")
ax.plot(data_time,data_relax,"o")
plt.show()