Python并行化错误的多处理 - "功能'对象不可迭代"

时间:2017-08-14 19:52:10

标签: python gpu joblib multi-gpu tesla

我们的数据中心内有 NVIDIA Tesla K80 GPU加速器计算,具有以下特征:Intel(R) Xeon(R) CPU E5-2670 v3 @2.30GHz, 48 CPU processors, 128GB RAM, 12 CPU cores在Linux 64位下运行。

我正在运行以下代码,该代码在将GridSearchCV模型的不同数据集垂直附加到单个数据系列之后执行RandomForestRegressor。例如,我正在考虑的两个样本数据集可以在this link

中找到
from joblib import Parallel, delayed
import multiprocessing
import sys
import imp
import glob
import os
import pandas as pd
import math
from sklearn.feature_extraction.text import CountVectorizer 
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
import matplotlib
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
import numpy as np
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import GridSearchCV
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LassoCV
from sklearn.metrics import r2_score, mean_squared_error, make_scorer
from sklearn.model_selection import train_test_split
from math import sqrt
from sklearn.cross_validation import train_test_split

df = pd.concat(map(pd.read_csv, glob.glob(os.path.join('', "cubic*.csv"))), ignore_index=True)
#df = pd.read_csv('cubic31.csv')

for i in range(1,3):
    df['X_t'+str(i)] = df['X'].shift(i)

print(df)

df.dropna(inplace=True)

X = (pd.DataFrame({ 'X_%d'%i : df['X'].shift(i) for i in range(3)}).apply(np.nan_to_num, axis=0).values)

X = df.drop('Y', axis=1)
y = df['Y']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.40)

X_train = X_train.drop('time', axis=1)
X_test = X_test.drop('time', axis=1)


print(X.shape)
print(df['Y'].shape)

print()
print("Size of X_train:",(len(X_train)))
print("Size of Y_train:",(len(X_train)))
print("Size of X_test:",(len(X_test)))
print("Size of Y_test:",(len(y_test)))

print()

def gridSearchCVParallel():
    #Fit models with some grid search CV=5 (not to low), use the best model
    parameters = {'n_estimators': [10,30,100,500,1000]}
    clf_rf = RandomForestRegressor(random_state=1)
    clf = GridSearchCV(clf_rf, parameters, cv=5, scoring='neg_mean_squared_error')
    model = clf.fit(X_train, y_train)
    model.cv_results_['params'][model.best_index_]
    math.sqrt(model.best_score_*-1)
    model.grid_scores_

    #####
    print()
    print(model.grid_scores_)
    print("The best score: ",model.best_score_)

    print("RMSE:",math.sqrt(model.best_score_*-1))

    #reg = RandomForestRegressor(criterion='mse')
    clf_rf.fit(X_train,y_train)
    modelPrediction = clf_rf.predict(X_test)
    print(modelPrediction)

    print("Number of predictions:",len(modelPrediction))

    meanSquaredError=mean_squared_error(y_test, modelPrediction)
    print("Mean Square Error (MSE):", meanSquaredError)
    rootMeanSquaredError = sqrt(meanSquaredError)
    print("Root-Mean-Square Error (RMSE):", rootMeanSquaredError)


    ####### to add the trendline
    fig, ax = plt.subplots()
    #df.plot(x='time', y='Y', ax=ax)
    ax.plot(df['time'].values, df['Y'].values)


    fig, ax = plt.subplots()
    index_values=range(0,len(y_test))

    y_test.sort_index(inplace=True)
    X_test.sort_index(inplace=True)

    modelPred_test = clf_rf.predict(X_test)
    ax.plot(pd.Series(index_values), y_test.values)


    PlotInOne=pd.DataFrame(pd.concat([pd.Series(modelPred_test), pd.Series(y_test.values)], axis=1))

    plt.figure(); PlotInOne.plot(); plt.legend(loc='best')
NumberOfCores = multiprocessing.cpu_count()

gridResults = Parallel(n_jobs=NumberOfCores)(delayed(gridSearchCVParallel))

print(gridResults)

当我最终为一个庞大的数据集(大约200万行)运行这个程序时,GridSearchCV需要4天以上的时间。经过一些搜索后,我发现Python个线程可以使用concurrent.futuresmultiprocessing来使用多个CPU。正如我在代码中所示,我尝试使用multiplrocessing,但我收到此错误TypeError: 'function' object is not iterable。这似乎函数应该将一个参数作为输入,我们传入一个iterable作为参数。如何解决此问题以便利用多个CPU并在短时间内更快地完成任务?

提前谢谢。

1 个答案:

答案 0 :(得分:1)

尝试自行并行化。 不使用 joblib.Parallel。无论如何,你将重新发明轮子,因为GridSearchCV 已经被parellized 。只需传递n_jobs参数,默认为1,即默认使用单个作业。要利用多核架构,请传递n_jobs = number_of_cores,其中number_of_cores是您要使用的核心数。

如果您检查source code,您会看到它基本上打包了joblib.Parallel,因此n_jobs=-1应该适用于“所有核心”。