我使用下面的代码进行简单的逻辑回归。我能够获得b的更新值:训练前/后b.eval()
的值不同。但是,W.eval()
的值保持不变。我想知道我犯了什么错误?谢谢!
from __future__ import print_function
import tensorflow as tf
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# Parameters
learning_rate = 0.01
training_epochs = 20
batch_size = 100
display_step = 1
# tf Graph Input
x = tf.placeholder(tf.float32, [None, 784]) # mnist data image of shape 28*28=784
y = tf.placeholder(tf.float32, [None, 10]) # 0-9 digits recognition => 10 classes
# Set model weights
W = tf.Variable(tf.random_normal([784, 10]))
b = tf.Variable(tf.zeros([10]))
# Construct model
pred = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax
# Minimize error using cross entropy
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=1))
# Gradient Descent
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# Initializing the variables
init = tf.global_variables_initializer()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
print('W is:')
print(W.eval())
print('b is:')
print(b.eval())
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={x: batch_xs,
y: batch_ys})
# Compute average loss
avg_cost += c / total_batch
# Display logs per epoch step
if (epoch+1) % display_step == 0:
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost))
print("Optimization Finished!")
print('W is:')
print(W.eval())
print('b is:')
print(b.eval())
# Test model
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# Calculate accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
答案 0 :(得分:0)
当我们打印一个numpy数组时,只会打印初始值和最后一个值,并且在MNIST的情况下,这些权重指数不会更新,因为图像中的相应像素保持不变,因为所有数字都写在数组的中心部分或图像中没有沿边界地区。 从一个输入样本到另一个输入样本变化的实际像素是中心像素,因此只有那些相应的权重元素才会得到更新。 要比较训练前后的重量,你可以使用numpy.array_equal(w1,w2) 或者,您可以通过执行以下操作来打印整个numpy数组: 导入numpy numpy.set_printoptions(阈值='楠') 或者,您可以逐个元素进行比较,并仅打印那些相差一定阈值的数组值