我正在Mac上的Ubuntu 16.04 Parallels桌面上运行Google的tensorflow对象检测API的jupyter笔记本。我想测试一个非默认模型(即没有带有Mobilenet的SSD),看看边界框的准确性如何在对象检测任务上发生变化。
我在笔记本中更改了模型准备部分,如下所示:
# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'
MODEL_NAME = 'ssd_inception_v2_coco_11_06_2017'
MODEL_NAME = 'rfcn_resnet101_coco_11_06_2017'
#MODEL_NAME = 'faster_rcnn_resnet101_coco_11_06_2017'
#MODEL_NAME = 'faster_rcnn_inception_resnet_v2_atrous_coco_11_06_2017'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 90
然后我跳转到执行将冻结的Tensorflow模型加载到内存中的单元格。不幸的是,如果我尝试最后3个型号中的任何一个(rfcn_resnet101_coco_11_06_2017,faster_rcnn_resnet101_coco_11_06_2017,faster_rcnn_inception_resnet_v2_atrous_coco_11_06_2017),笔记本电脑在Firefox中崩溃,我收到以下错误消息:
The kernel appears to have died. It will restart automatically.
所以我无法测试最后3个模型,即使我已经下载了tar.gz文件并将它们提取到object_detection文件夹中。有人可以解释一下我的错误吗?
感谢您的时间!
答案 0 :(得分:1)
事实证明,这个问题是因为我没有为Parallels分配足够的内存。我分配了更多内存后脚本工作。感谢小费乔纳森!