这是我的数据[作为熊猫df]:
print(X_train [numeric_predictors + categorical_predictors] .head()):
bathrooms bedrooms price building_id \
10 1.5 3.0 3000.0 53a5b119ba8f7b61d4e010512e0dfc85
10000 1.0 2.0 5465.0 c5c8a357cba207596b04d1afd1e4f130
100004 1.0 1.0 2850.0 c3ba40552e2120b0acfc3cb5730bb2aa
100007 1.0 1.0 3275.0 28d9ad350afeaab8027513a3e52ac8d5
100013 1.0 4.0 3350.0 0
99993 1.0 0.0 3350.0 ad67f6181a49bde19218929b401b31b7
99994 1.0 2.0 2200.0 5173052db6efc0caaa4d817112a70f32
manager_id
10 5ba989232d0489da1b5f2c45f6688adc
10000 7533621a882f71e25173b27e3139d83d
100004 d9039c43983f6e564b1482b273bd7b01
100007 1067e078446a7897d2da493d2f741316
100013 98e13ad4b495b9613cef886d79a6291f
...
99993 9fd3af5b2d23951e028059e8940a55d7
99994 d7f57128272bfd82e33a61999b5f4c42
最后两列是分类预测变量。
同样,打印熊猫系列X_train [target]:
10 medium
10000 low
100004 high
100007 low
100013 low
...
99993 low
99994 low
我正在尝试使用管道模板并使用散列矢量化器获得错误。
首先,这是我的字典hasher,它给了我一个MemoryError:
from sklearn.feature_extraction import DictVectorizer
dv = DictVectorizer(sparse=False)
feature_dict = X_train[categorical_predictors].to_dict(orient='records')
dv.fit(feature_dict)
out = pd.DataFrame(
dv.transform(feature_dict),
columns = dv.feature_names_
)
所以在下一个单元格中,我使用以下代码作为我的特征哈希编码器:
from sklearn.feature_extraction import FeatureHasher
fh = FeatureHasher(n_features=2)
feature_dict = X_train[categorical_predictors].to_dict(orient='records')
fh.fit(feature_dict)
out = pd.DataFrame(fh.transform(feature_dict).toarray())
#print out.head()
注释掉的打印行为我提供了一个DataFrame,其特征行包含每行2个单元格中的-1.0,0.0或1.0浮点数。
这是我的矢量化器汇总字典&功能哈希:
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.feature_extraction import FeatureHasher, DictVectorizer
class MyVectorizer(BaseEstimator, TransformerMixin):
"""
Vectorize a set of categorical variables
"""
def __init__(self, cols, hashing=None):
"""
args:
cols: a list of column names of the categorical variables
hashing:
If None, then vectorization is a simple one-hot-encoding.
If an integer, then hashing is the number of features in the output.
"""
self.cols = cols
self.hashing = hashing
def fit(self, X, y=None):
data = X[self.cols]
# Choose a vectorizer
if self.hashing is None:
self.myvec = DictVectorizer(sparse=False)
else:
self.myvec = FeatureHasher(n_features = self.hashing)
self.myvec.fit(X[self.cols].to_dict(orient='records'))
return self
def transform(self, X):
# Vectorize Input
if self.hashing is None:
return pd.DataFrame(
self.myvec.transform(X[self.cols].to_dict(orient='records')),
columns = self.myvec.feature_names_
)
else:
return pd.DataFrame(
self.myvec.transform(X[self.cols].to_dict(orient='records')).toarray()
)
我把它放在我的管道中:
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import FeatureUnion
pipeline = Pipeline([
('preprocess', FeatureUnion([
('numeric', Pipeline([
('scale', StandardScaler())
])
),
('categorical', Pipeline([
('vectorize', MyVectorizer(cols=['categorical_predictors'], hashing=None))
])
)
])),
('predict', MultinomialNB(alphas))
])
和alpha参数:
alphas = {
'predict__alpha': [.01, .1, 1, 2, 10]
}
并使用gridsearchCV,当我在第三行得到一个错误:
print X_train.head(), train_data[target]
grid_search = GridSearchCV(pipeline, param_grid=alphas,scoring='accuracy')
grid_search.fit(X_train[numeric_predictors + categorical_predictors], X_train[target])
grid_search.best_params_
ValueError:无法将字符串转换为float:d7f57128272bfd82e33a61999b5f4c42
答案 0 :(得分:2)
错误是由StandardScaler引起的。您将所有数据发送到其中,这是错误的。在您的管道中,在FeatureUnion部分中,您已选择MyVectorizer
的分类列,但未对StandardScaler进行任何选择,因此所有列都将进入,导致错误。此外,由于内部管道仅由单个步骤组成,因此不需要管道。
首先,将管道更改为:
pipeline = Pipeline([
('preprocess', FeatureUnion([
('scale', StandardScaler()),
('vectorize', MyVectorizer(cols=['categorical_predictors'], hashing=None))
])),
('predict', MultinomialNB())
])
这仍然会抛出同样的错误,但现在看起来要复杂得多。
现在我们需要的是可以选择要给StandardScaler的列(数字列),以便不抛出错误。
我们可以通过多种方式实现这一目标,但我正在遵循您的编码风格,并会根据更改创建一个新的课程MyScaler
。
class MyScaler(BaseEstimator, TransformerMixin):
def __init__(self, cols):
self.cols = cols
def fit(self, X, y=None):
self.scaler = StandardScaler()
self.scaler.fit(X[self.cols])
return self
def transform(self, X):
return self.scaler.transform(X[self.cols])
然后将管道更改为:
numeric_predictors=['bathrooms','bedrooms','price']
categorical_predictors = ['building_id','manager_id']
pipeline = Pipeline([
('preprocess', FeatureUnion([
('scale', MyScaler(cols=numeric_predictors)),
('vectorize', MyVectorizer(cols=['categorical_predictors'], hashing=None))
])),
('predict', MultinomialNB())
])
然后它会抛出错误,因为您已将categorical_predictors指定为MyVectorizer
的字符串,而不是列表。将其更改为我在MyScaler
中所做的更改:更改
MyVectorizer(cols=['categorical_predictors'], hashing=None))
来: -
MyVectorizer(cols=categorical_predictors, hashing=None)
现在您的代码已准备好在语法上执行。但是现在你已经使用MultinomialNB()
作为预测器,它只需要特征中的正值。但是,由于StandardScaler将数据缩放为零均值,因此它会将某些值转换为负值,并且您的代码将再次无效。你需要决定做什么......也许把它改成MinMaxScaler。