我知道特征散列(散列技巧)用于减少维度并处理位向量的稀疏性,但我不明白它是如何工作的。任何人都可以向我解释一下。是否有任何python库可用于进行功能散列?
谢谢。
答案 0 :(得分:6)
在Pandas上,您可以使用以下内容:
import pandas as pd
import numpy as np
data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'],
'year': [2000, 2001, 2002, 2001, 2002],
'pop': [1.5, 1.7, 3.6, 2.4, 2.9]}
data = pd.DataFrame(data)
def hash_col(df, col, N):
cols = [col + "_" + str(i) for i in range(N)]
def xform(x): tmp = [0 for i in range(N)]; tmp[hash(x) % N] = 1; return pd.Series(tmp,index=cols)
df[cols] = df[col].apply(xform)
return df.drop(col,axis=1)
print hash_col(data, 'state',4)
输出为
pop year state_0 state_1 state_2 state_3
0 1.5 2000 0 1 0 0
1 1.7 2001 0 1 0 0
2 3.6 2002 0 1 0 0
3 2.4 2001 0 0 0 1
4 2.9 2002 0 0 0 1
同样在系列级别,您可以
将numpy导入为np,os import sys,pandas as pd
def hash_col(df, col, N):
df = df.replace('',np.nan)
cols = [col + "_" + str(i) for i in range(N)]
tmp = [0 for i in range(N)]
tmp[hash(df.ix[col]) % N] = 1
res = df.append(pd.Series(tmp,index=cols))
return res.drop(col)
a = pd.Series(['new york',30,''],index=['city','age','test'])
b = pd.Series(['boston',30,''],index=['city','age','test'])
print hash_col(a,'city',10)
print hash_col(b,'city',10)
这将适用于每个系列,列名将被假定为Pandas索引。它还用nan替换空字符串,并浮动所有内容。
age 30
test NaN
city_0 0
city_1 0
city_2 0
city_3 0
city_4 0
city_5 0
city_6 0
city_7 1
city_8 0
city_9 0
dtype: object
age 30
test NaN
city_0 0
city_1 0
city_2 0
city_3 0
city_4 0
city_5 1
city_6 0
city_7 0
city_8 0
city_9 0
dtype: object
但是,如果有词汇表,并且您只想进行单热编码,则可以使用
import numpy as np
import pandas as pd, os
import scipy.sparse as sps
def hash_col(df, col, vocab):
cols = [col + "=" + str(v) for v in vocab]
def xform(x): tmp = [0 for i in range(len(vocab))]; tmp[vocab.index(x)] = 1; return pd.Series(tmp,index=cols)
df[cols] = df[col].apply(xform)
return df.drop(col,axis=1)
data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'],
'year': [2000, 2001, 2002, 2001, 2002],
'pop': [1.5, 1.7, 3.6, 2.4, 2.9]}
df = pd.DataFrame(data)
df2 = hash_col(df, 'state', ['Ohio','Nevada'])
print sps.csr_matrix(df2)
将给出
pop year state=Ohio state=Nevada
0 1.5 2000 1 0
1 1.7 2001 1 0
2 3.6 2002 1 0
3 2.4 2001 0 1
4 2.9 2002 0 1
我还添加了最终数据帧的稀疏化。在增量设置中,我们可能没有预先遇到所有值(但我们以某种方式以某种方式获得了所有可能值的列表),可以使用上面的方法。增量ML方法在每个增量处需要相同数量的特征,因此单热编码必须在每个批处理中产生相同数量的行。
答案 1 :(得分:2)
Here(抱歉,由于某些原因,我无法将其添加为评论。)此外,Feature Hashing for Large Scale Multitask Learning的第一页很好地解释了这一点。
答案 2 :(得分:1)
大型稀疏功能可以从交互派生,U代表用户,X代表电子邮件,因此U x X的维度是内存密集型。通常,垃圾邮件过滤等任务也有时间限制。
哈希技巧与其他哈希函数存储二进制位(索引)一样,使大规模训练可行。理论上,如原始论文所示,更多的散列长度可以获得更多的性能提升。
它将原始特征分配到不同的桶(特征空间的有限长度)中,以便保持它们的语义。即使垃圾邮件发送者使用拼写错误而错过了雷达。虽然存在失真错误,但是继承人的形式仍然很接近。
例如,
"快速的棕色狐狸"转换为:
h(the) mod 5 = 0
h(quick) mod 5 = 1
h(brown) mod 5 = 1
h(fox) mod 5 = 3
使用索引而不是文本值,节省空间。
总结一些应用程序:
高维特征向量的降维
稀疏
即时的词汇
跨产品功能
多任务学习
参考:
原始论文:
功能哈希
Shi,Q。,Petterson,J.,Dror,G.,Langford,J.,Smola,A.,Strehl,A。,& Vishwanathan,V。(2009)。 哈希内核
Gionis,A.,Indyk,P。,& Motwani,R。(1999)。通过散列在高维度上搜索相似性
实施: