我有一个排序的数字列表,如:
a = [77,98,99,100,101,102,198,199,200,200,278,299,300,300,300]
我需要找到每个值的最大索引,它可以被100整除。
输出应该像:4,10,15
我的代码:
a = [77,98,99,100,101,102,198,199,200,200,278,299,300,300,300]
idx = 1
for i in (a):
if i%100 == 0:
print idx
idx = idx+1
输出上述代码:
4
9
10
13
14
15
答案 0 :(得分:3)
如果人们好奇,我将dict理解技术与反向迭代技术进行对比。 Dict理解速度大约是其两倍。更改为OrderedDict
会导致MASSIVE减速。比dict理解慢约15倍。
def test1():
a = [77,98,99,100,101,102,198,199,200,200,278,299,300,300,300]
max_index = {}
for i, item in enumerate(a[::-1]):
if item not in max_index:
max_index[item] = len(a) - (i + 1)
return max_index
def test2():
a = [77,98,99,100,101,102,198,199,200,200,278,299,300,300,300]
return {item: index for index, item in enumerate(a, 1)}
def test3():
a = [77,98,99,100,101,102,198,199,200,200,278,299,300,300,300]
OrderedDict((item, index) for index, item in enumerate(a, 1))
if __name__ == "__main__":
import timeit
print(timeit.timeit("test1()", setup="from __main__ import test1"))
print(timeit.timeit("test2()", setup="from __main__ import test2"))
print(timeit.timeit("test3()", setup="from __main__ import test3; from collections import OrderedDict"))
3.40622282028
1.97545695305
26.347012043
答案 1 :(得分:2)
使用简单的字典理解或OrderedDict
将可分项作为键,旧值将自动替换为最新值。
>>> {item: index for index, item in enumerate(lst, 1) if not item % 100}.values()
dict_values([4, 10, 15])
# if order matters
>>> from collections import OrderedDict
>>> OrderedDict((item, index) for index, item in enumerate(lst, 1) if not item % 100).values()
odict_values([4, 10, 15])
另一种方法是循环反转列表并使用set
来跟踪到目前为止看到的项目(lst[::-1]
可能比微小列表的reversed(lst)
略快一些。“ / p>
>>> seen = set()
>>> [len(lst) - index for index, item in enumerate(reversed(lst))
if not item % 100 and item not in seen and not seen.add(item)][::-1]
[4, 10, 15]
您可以看到上述here的等效代码。
答案 2 :(得分:1)
您可以使用itertools.groupby
,因为您的数据已经过排序:
>>> a = [77,98,99,100,101,102,198,199,200,200,278,299,300,300,300]
>>> from itertools import groupby
>>> [list(g)[-1][0] for k,g in groupby(enumerate(a), lambda t: (t[1] % 100, t[1])) if k[0] == 0]
[3, 9, 14]
虽然这有点神秘。
这是一个复杂的方法,只使用list-iterator并累积到列表中:
>>> run, prev, idx = False, None, []
>>> for i, e in enumerate(a):
... if not (e % 100 == 0):
... if not run:
... prev = e
... continue
... idx.append(i - 1)
... run = False
... else:
... if prev != e and run:
... idx.append(i - 1)
... run = True
... prev = e
...
>>> if run:
... idx.append(i)
...
>>> idx
[3, 9, 14]
我认为最好处理像@AshwiniChaudhary这样的字典方法它更直接,更快:
>>> timeit.timeit("{item: index for index, item in enumerate(a, 1)}", "from __main__ import a")
1.842843743012054
>>> timeit.timeit("[list(g)[-1][0] for k,g in groupby(enumerate(a), lambda t: (t[1] % 100, t[1])) if k[0] == 0]", "from __main__ import a, groupby")
8.479677081981208
groupby
方法非常缓慢,请注意,复杂的方法更快,并且不会远离字典理解方法:
>>> def complicated(a):
... run, prev, idx = False, None, []
... for i, e in enumerate(a):
... if not (e % 100 == 0):
... if not run:
... prev = e
... continue
... idx.append(i - 1)
... run = False
... else:
... if prev != e and run:
... idx.append(i - 1)
... run = True
... prev = e
... if run:
... idx.append(i)
... return idx
...
>>> timeit.timeit("complicated(a)", "from __main__ import a, complicated")
2.6667005629860796
list
上调用.values()
,性能差异就会缩小:
>>> timeit.timeit("list({item: index for index, item in enumerate(a, 1)}.values())", "from __main__ import a")
2.3839886570058297
>>> timeit.timeit("complicated(a)", "from __main__ import a, complicated")
2.708565960987471
答案 3 :(得分:0)
a = [0,77,98,99,100,101,102,198,199,200,200,278,299,300,300,300, 459, 700,700]
bz = [*zip(*((i, d//100) for i, d in enumerate(a) if d%100 == 0 and d != 0))]
[a for a, b, c in zip(*bz, bz[1][1:]) if c-b != 0] + [bz[0][-1]]
Out[78]: [4, 10, 15, 18]
枚举,压缩以创建bz
,其中100个分子与索引配对
bz = [*zip(*((i, d//100) for i, d in enumerate(a) if d%100 == 0 and d != 0))]
print(*bz, sep='\n')
(4, 9, 10, 13, 14, 15, 17, 18)
(1, 2, 2, 3, 3, 3, 7, 7)
然后再次压缩,zip(*bz, bz[1][1:])
滞后于分子元组以允许滞后差异为每次运行的最后一个索引提供选择逻辑if c-b != 0
但是最后一个
添加最近100次的匹配,因为它始终是上次运行的结束+ [bz[0][-1]]