我刚在Windows 10计算机上安装了两个Nvidia K2200 GPU,CUDA软件和CuDNN软件。我通过跟踪this Stack Overflow回答来检查一切是否运行良好,但我收到了一条带有大量警告的重要消息。我不知道如何解释它。该消息是否意味着某些东西和我的TensorFlow / Keras代码不起作用?
这是一个消息:
2017-08-09 09:03:52.984209: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE instructions, but these are available on your machine and could speed up CPU computations.
2017-08-09 09:03:52.984358: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE2 instructions, but these are available on your machine and could speed up CPU computations.
2017-08-09 09:03:52.985302: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
2017-08-09 09:03:52.986429: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-08-09 09:03:52.987150: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-08-09 09:03:52.990185: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-08-09 09:03:52.990775: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-08-09 09:03:52.991261: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
2017-08-09 09:03:53.310243: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:940] Found device 0 with properties:
name: Quadro K2200
major: 5 minor: 0 memoryClockRate (GHz) 1.124
pciBusID 0000:04:00.0
Total memory: 4.00GiB
Free memory: 3.35GiB
2017-08-09 09:03:53.405531: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\stream_executor\cuda\cuda_driver.cc:523] A non-primary context 000001B8981C7F00 exists before initializing the StreamExecutor. We haven't verified StreamExecutor works with that.
2017-08-09 09:03:53.406260: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:940] Found device 1 with properties:
name: Quadro K2200
major: 5 minor: 0 memoryClockRate (GHz) 1.124
pciBusID 0000:01:00.0
Total memory: 4.00GiB
Free memory: 3.35GiB
2017-08-09 09:03:53.409719: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:832] Peer access not supported between device ordinals 0 and 1
2017-08-09 09:03:53.411660: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:832] Peer access not supported between device ordinals 1 and 0
2017-08-09 09:03:53.412396: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:961] DMA: 0 1
2017-08-09 09:03:53.413047: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:971] 0: Y N
2017-08-09 09:03:53.413445: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:971] 1: N Y
2017-08-09 09:03:53.414996: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:1030] Creating TensorFlow device (/gpu:0) -> (device: 0, name: Quadro K2200, pci bus id: 0000:04:00.0)
2017-08-09 09:03:53.415559: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:1030] Creating TensorFlow device (/gpu:1) -> (device: 1, name: Quadro K2200, pci bus id: 0000:01:00.0)
[name: "/cpu:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 15789200439240454107
, name: "/gpu:0"
device_type: "GPU"
memory_limit: 3280486400
locality {
bus_id: 1
}
incarnation: 685299155373543396
physical_device_desc: "device: 0, name: Quadro K2200, pci bus id: 0000:04:00.0"
, name: "/gpu:1"
device_type: "GPU"
memory_limit: 3280486400
locality {
bus_id: 1
}
incarnation: 16323028758437337139
physical_device_desc: "device: 1, name: Quadro K2200, pci bus id: 0000:01:00.0"
]
答案 0 :(得分:2)
你可以尝试添加一个负载(例如训练一些模型)并检查" nvidia-smi"在它工作时从终端 - 它应该显示你的GPU利用率。