在我的Ubuntu上安装TensorFlow时,我想将GPU与CUDA一起使用。
的这一步停了下来这到底./configure
到底在哪里?或者我的源树根源在哪里。
我的TensorFlow位于/usr/local/lib/python2.7/dist-packages/tensorflow
。但我仍然没有找到./configure
。
修改
我根据Salvador Dali's answer找到了./configure
。但是在执行示例代码时,我收到以下错误:
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
I tensorflow/core/common_runtime/local_device.cc:25] Local device intra op parallelism threads: 8
E tensorflow/stream_executor/cuda/cuda_driver.cc:466] failed call to cuInit: CUDA_ERROR_NO_DEVICE
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:86] kernel driver does not appear to be running on this host (cliu-ubuntu): /proc/driver/nvidia/version does not exist
I tensorflow/core/common_runtime/gpu/gpu_init.cc:112] DMA:
I tensorflow/core/common_runtime/local_session.cc:45] Local session inter op parallelism threads: 8
无法找到cuda设备。
答案
请参阅有关如何启用GPU支持的答案here。
答案 0 :(得分:7)
这是一个bash脚本,假设在
中源树的根
当你cloned the repo时。这是https://github.com/tensorflow/tensorflow/blob/master/configure
答案 1 :(得分:3)
实际上,我有GPU NVIDIA Corporation GK208GLM [Quadro K610M]
。我也安装了CUDA
+ cuDNN
。 (因此,以下答案基于您已使用正确版本正确安装CUDA 7.0+
+ cuDNN
。)但问题是:我安装了驱动程序,但GPU无法正常工作。我让它按以下步骤工作:
起初,我做了lspci
并得到了:
01:00.0 VGA compatible controller: NVIDIA Corporation GK208GLM [Quadro K610M] (rev ff)
此处的状态为 rev ff 。然后,我做了sudo update-pciids
,再次检查lspci
,然后得到:
01:00.0 VGA compatible controller: NVIDIA Corporation GK208GLM [Quadro K610M] (rev a1)
现在,Nvidia GPU的状态正确为 rev a1 。但现在,tensorflow
还没有支持GPU。接下来的步骤是(我安装的Nvidia驱动程序是版本nvidia-352
):
sudo modprobe nvidia_352
sudo modprobe nvidia_352_uvm
以便将驱动程序添加到正确的模式。再次检查:
cliu@cliu-ubuntu:~$ lspci -vnn | grep -i VGA -A 12
01:00.0 VGA compatible controller [0300]: NVIDIA Corporation GK208GLM [Quadro K610M] [10de:12b9] (rev a1) (prog-if 00 [VGA controller])
Subsystem: Hewlett-Packard Company Device [103c:1909]
Flags: bus master, fast devsel, latency 0, IRQ 16
Memory at cb000000 (32-bit, non-prefetchable) [size=16M]
Memory at 50000000 (64-bit, prefetchable) [size=256M]
Memory at 60000000 (64-bit, prefetchable) [size=32M]
I/O ports at 5000 [size=128]
Expansion ROM at cc000000 [disabled] [size=512K]
Capabilities: <access denied>
Kernel driver in use: nvidia
cliu@cliu-ubuntu:~$ lsmod | grep nvidia
nvidia_uvm 77824 0
nvidia 8646656 1 nvidia_uvm
drm 348160 7 i915,drm_kms_helper,nvidia
我们可以发现显示Kernel driver in use: nvidia
且nvidia
处于正确模式。
现在,使用示例here来测试GPU:
cliu@cliu-ubuntu:~$ python
Python 2.7.9 (default, Apr 2 2015, 15:33:21)
[GCC 4.9.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
>>> b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
>>> c = tf.matmul(a, b)
>>> sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
I tensorflow/core/common_runtime/local_device.cc:25] Local device intra op parallelism threads: 8
I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:888] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
I tensorflow/core/common_runtime/gpu/gpu_init.cc:88] Found device 0 with properties:
name: Quadro K610M
major: 3 minor: 5 memoryClockRate (GHz) 0.954
pciBusID 0000:01:00.0
Total memory: 1023.81MiB
Free memory: 1007.66MiB
I tensorflow/core/common_runtime/gpu/gpu_init.cc:112] DMA: 0
I tensorflow/core/common_runtime/gpu/gpu_init.cc:122] 0: Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:643] Creating TensorFlow device (/gpu:0) -> (device: 0, name: Quadro K610M, pci bus id: 0000:01:00.0)
I tensorflow/core/common_runtime/gpu/gpu_region_allocator.cc:47] Setting region size to 846897152
I tensorflow/core/common_runtime/local_session.cc:45] Local session inter op parallelism threads: 8
Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Quadro K610M, pci bus id: 0000:01:00.0
I tensorflow/core/common_runtime/local_session.cc:107] Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Quadro K610M, pci bus id: 0000:01:00.0
>>> print sess.run(c)
b: /job:localhost/replica:0/task:0/gpu:0
I tensorflow/core/common_runtime/simple_placer.cc:289] b: /job:localhost/replica:0/task:0/gpu:0
a: /job:localhost/replica:0/task:0/gpu:0
I tensorflow/core/common_runtime/simple_placer.cc:289] a: /job:localhost/replica:0/task:0/gpu:0
MatMul: /job:localhost/replica:0/task:0/gpu:0
I tensorflow/core/common_runtime/simple_placer.cc:289] MatMul: /job:localhost/replica:0/task:0/gpu:0
[[ 22. 28.]
[ 49. 64.]]
如您所见,GPU已被使用。
答案 2 :(得分:2)
关于第二个问题:您是否安装了兼容的GPU(NVIDIA计算能力3.5或更高版本),是否按照说明安装了CUDA 7.0 + cuDNN?这是您看到失败的最可能原因。如果答案是肯定的,那可能是一个cuda安装问题。当你运行nvidia-smi时,你看到你的GPU列出了吗?如果没有,你需要先修复它。这可能需要获得更新的驱动程序和/或重新运行nvidia-xconfig等。
答案 3 :(得分:0)
只有拥有7.0 cuda库和6.5 cudnn库,才能从源代码重建GPU版本。 这需要由谷歌更新,我认为