比较海量数据的最佳算法

时间:2017-08-08 06:49:59

标签: algorithm performance python-3.x string-comparison bigdata

我有一个大数据集作为csv(334MB),如下所示。

month, output
1,"['23482394','4358309','098903284'....(total 2.5 million entries)]"
2,"['92438545','23482394',323103404'....(total 2.2 million entries)]"
3,"[...continue

现在,我需要比较一个月的输出百分比与上个月的百分比。

例如,当我比较第1个月和第2个月时,我希望获得类似&#34的结果;第2个月的输出与第1个月和第34个重叠90%,然后是#34;第3个月有88个对于Month2"

的百分比过高

Python3解决此问题的最佳方法是什么?

1 个答案:

答案 0 :(得分:0)

您可以使用set intersection方法提取两个数组或列表的公共元素。集合交集的复杂度为O(min(len(a),len(b))。

# generate random numpy array with unique elements
import numpy as np

month1 = np.random.choice(range(10**5, 10**7), size=25*10**5, replace=False)
month2 = np.random.choice(range(10**5, 10**7), size=22*10**5, replace=False)
month3 = np.random.choice(range(10**5, 10**7), size=21*10**5, replace=False)

print('Month 1, 2, and 3 contains {}, {}, and {} elements respectively'.format(len(month1), len(month2), len(month3)))

Month 1, 2, and 3 contains 2500000, 2200000, and 2100000 elements respectively

# Compare month arrays for overlap

import time

startTime = time.time()
union_m1m2 = set(month1).intersection(month2) 
union_m2m3 = set(month2).intersection(month3)

print('Percent of elements in both month 1 & 2: {}%'.format(round(100*len(union_m1m2)/len(month2),2)))
print('Percent of elements in both month 2 & 3: {}%'.format(round(100*len(union_m2m3)/len(month3),2)))

print('Process time:{:.2f}s'.format(time.time()-startTime))

Percent of elements in both month 1 & 2: 25.3%
Percent of elements in both month 2 & 3: 22.24%
Process time:2.46s

月份条目与实际数据之间的重叠可能会更好。