我有一个由以下列组成的pandas数据框
col1, col2, _time
_time
列是行及时发生的日期时间对象。
我想在两列中以10分钟周期组重新采样我的数据帧,并汇总每10分钟一段时间内发生的每组的行数。我希望生成的数据框具有以下列
col1 col2 since until count
其中since
是每个10分钟句点的开始until
每个10分钟时间段的结束,并计算在初始数据帧上找到的行数
col1 col2 since until count
1 1 08/12/2017 12:00 08/12/2017 12:10 10
1 2 08/12/2017 12:00 08/12/2017 12:10 5
1 1 08/12/2017 12:10 08/12/2017 12:20 3
这是否可以使用数据帧的重采样方法?
答案 0 :(得分:1)
我之前一直在考虑resample
,但无济于事。
幸运的是,我找到了使用pd.Series.dt.floor
的解决方案!
.dt.floor
将时间戳与10分钟间隔对齐,pd.to_timedelta
计算until
列中的since
列例如,
import pandas as pd
interval = '10min' # 10 minutes intervals, please
# Dummy data with 3-minute intervals
data = pd.DataFrame({
'col1': [0, 0, 1, 0, 0, 0, 1, 0, 1, 1],
'col2': [4, 4, 4, 3, 4, 4, 3, 3, 4, 4],
'_time': pd.date_range(start='2010-01-01 00:01:00', freq='3min', periods=10),
})
# Floor the timestamps to your desired interval
since = data['_time'].dt.floor(interval).rename('since')
# Get the size of each group - groups are in the index of `agg`
agg = data.groupby(['col1', 'col2', since]).size()
agg = agg.rename('count')
# Back to dataframe
agg = agg.reset_index()
# Simply add your interval to `since`
agg['until'] = agg['since'] + pd.to_timedelta(interval)
print(agg)
col1 col2 since count until
0 0 3 2010-01-01 00:10:00 1 2010-01-01 00:20:00
1 0 3 2010-01-01 00:20:00 1 2010-01-01 00:30:00
2 0 4 2010-01-01 00:00:00 2 2010-01-01 00:10:00
3 0 4 2010-01-01 00:10:00 2 2010-01-01 00:20:00
4 1 3 2010-01-01 00:10:00 1 2010-01-01 00:20:00
5 1 4 2010-01-01 00:00:00 1 2010-01-01 00:10:00
6 1 4 2010-01-01 00:20:00 2 2010-01-01 00:30:00
答案 1 :(得分:0)
如果您仍在寻找答案,此示例可能会以某种方式帮助您。
import pandas as pd
import numpy as np
import datetime
# create some random data
df = pd.DataFrame(columns=["col1","col2","timestamp"])
df.col1 = np.random.randint(100, size = 10)
df.col2 = np.random.randint(100, size = 10)
df.timestamp = [datetime.datetime(2000,1,1) + \
datetime.timedelta(hours=int(i)) for i in np.random.randint(100, size = 10)]
# sort data by timestamp and reset index
df = df.sort_values(by="timestamp").reset_index(drop=True)
# create the bins by taking last first time and last time with freq 6h
bins = pd.date_range(start=df.timestamp.values[0],end=df.timestamp.values[-1], freq="6h") # change to reasonable freq (d, h, m, s)
# zip them to pairs
startend = list(zip(bins, bins.shift(1)))
# define a function that finds bin index
def time_in_range(x):
"""Return true if x is in the range [start, end]"""
for ind,(start,end) in enumerate(startend):
if start <= x <= end:
return ind
# Add bin index to column named index
df['index'] = df.timestamp.apply(time_in_range)
# groupby index to find sum and count
df = df.groupby('index')["col1","col2"].agg(['sum','count']).reset_index()
# Create output df2 (with bins)
df2 = pd.DataFrame(startend, columns=["start","end"]).reset_index()
# Join the two dataframes with column index
df3 =pd.merge(df2, df, how='outer', on='index').fillna(0)
# Final adjustments
df3.columns = ["index","start","end","col1","delete","col2","count"]
df3.drop(['delete','index'], axis=1, inplace=True)
输出:
<table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>start</th> <th>end</th> <th>col1</th> <th>col2</th> <th>count</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>2000-01-01 21:00:00</td> <td>2000-01-02 03:00:00</td> <td>89.0</td> <td>136.0</td> <td>2.0</td> </tr> <tr> <th>1</th> <td>2000-01-02 03:00:00</td> <td>2000-01-02 09:00:00</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <th>2</th> <td>2000-01-02 09:00:00</td> <td>2000-01-02 15:00:00</td> <td>69.0</td> <td>27.0</td> <td>1.0</td> </tr> <tr> <th>3</th> <td>2000-01-02 15:00:00</td> <td>2000-01-02 21:00:00</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <th>4</th> <td>2000-01-02 21:00:00</td> <td>2000-01-03 03:00:00</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <th>5</th> <td>2000-01-03 03:00:00</td> <td>2000-01-03 09:00:00</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <th>6</th> <td>2000-01-03 09:00:00</td> <td>2000-01-03 15:00:00</td> <td>108.0</td> <td>57.0</td> <td>2.0</td> </tr> <tr> <th>7</th> <td>2000-01-03 15:00:00</td> <td>2000-01-03 21:00:00</td> <td>35.0</td> <td>85.0</td> <td>2.0</td> </tr> <tr> <th>8</th> <td>2000-01-03 21:00:00</td> <td>2000-01-04 03:00:00</td> <td>102.0</td> <td>92.0</td> <td>2.0</td> </tr> <tr> <th>9</th> <td>2000-01-04 03:00:00</td> <td>2000-01-04 09:00:00</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <th>10</th> <td>2000-01-04 09:00:00</td> <td>2000-01-04 15:00:00</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <th>11</th> <td>2000-01-04 15:00:00</td> <td>2000-01-04 21:00:00</td> <td>91.0</td> <td>3.0</td> <td>1.0</td> </tr> </tbody></table>